Machine Learning-Aided Intelligent Monitoring of Multivariate miRNA Biomarkers Using Bipolar Self-powered Sensors

计算机科学 人工智能 多元统计 小RNA 机器学习 纳米技术 材料科学 生物 生物化学 基因
作者
Jing Xu,Xinqi Luo,Hanxiao Chen,Bin Guo,Zhenlong Wang,Fu Wang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c16423
摘要

Breast cancer has become the most prevalent form of cancer among women on a global scale. The early and timely diagnosis of breast cancer is of the utmost importance for improving the survival rate of patients with this disease. The occurrence of breast cancer is typically accompanied by the dysregulation of multiple microRNA (miRNA) expression profiles. Consequently, simultaneous detection of multiple miRNAs is vital for the early and accurate diagnosis of breast cancer. In this study, a bipolar self-powered sensor was developed for the simultaneous detection of miRNA-451 and miRNA-145 breast cancer biomarkers based on the specific catalytic properties of enzymes. Selenides with a microporous hollow cubic structure were designed and prepared, which can markedly enhance the enzyme load and activity, as well as detection sensitivity, due to their extensive surface area and three-dimensional porous channel. The designed bipolar self-powered sensor platform is integrated into the commercial chip, and the signal is presented in the smartphone interface, thereby enabling real-time and continuous monitoring. Furthermore, machine learning was utilized to predict miRNA detection, which encompasses numerous stages, including data collection, feature extraction, model training, and validation. In comparison to the limited sensing efficiency of self-powered biosensors driven by enzyme biofuel cells, our bipolar self-powered sensor achieved simultaneous quantitative analysis of multiple miRNA targets, thereby providing a robust tool for a more comprehensive understanding of miRNA function and its association with cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ame1120采纳,获得10
1秒前
ChenZhangyang发布了新的文献求助30
1秒前
大小罐子发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
wanci应助李恩乐采纳,获得10
5秒前
青衣完成签到,获得积分10
5秒前
听听看完成签到,获得积分10
5秒前
科研通AI5应助香蕉书竹采纳,获得30
5秒前
科研通AI5应助毛儿豆儿采纳,获得10
5秒前
HiDasiy发布了新的文献求助10
6秒前
hxnz2001完成签到,获得积分10
6秒前
科研通AI5应助毒蛇如我采纳,获得30
8秒前
由怜雪完成签到,获得积分10
8秒前
8秒前
善学以致用应助杨树采纳,获得10
8秒前
xujie发布了新的文献求助10
8秒前
杰克李李发布了新的文献求助20
9秒前
9秒前
9秒前
甜甜的半仙完成签到,获得积分10
9秒前
FashionBoy应助gao采纳,获得10
10秒前
清脆秋翠完成签到,获得积分10
10秒前
10秒前
柏梦岚发布了新的文献求助10
11秒前
beichuanheqi发布了新的文献求助10
11秒前
大力世界发布了新的文献求助10
12秒前
hym关闭了hym文献求助
14秒前
14秒前
阿耒发布了新的文献求助10
14秒前
14秒前
15秒前
skmksd发布了新的文献求助10
15秒前
小医学生完成签到,获得积分20
16秒前
科研通AI5应助缥缈的厉采纳,获得10
16秒前
17秒前
科研飞飞发布了新的文献求助30
17秒前
李健应助大小罐子采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515077
求助须知:如何正确求助?哪些是违规求助? 3097476
关于积分的说明 9235512
捐赠科研通 2792384
什么是DOI,文献DOI怎么找? 1532451
邀请新用户注册赠送积分活动 712103
科研通“疑难数据库(出版商)”最低求助积分说明 707107