Efficient presolving methods for solving maximal covering and partial set covering location problems

数学优化 计算机科学 整数规划 集合(抽象数据类型) 掩盖问题 设施选址问题 约束(计算机辅助设计) 树(集合论) 过程(计算) 整数(计算机科学) 斯坦纳树问题 有界函数 数学 程序设计语言 数学分析 几何学 操作系统
作者
Liang Chen,Sheng-Jie Chen,Wei‐Kun Chen,Yu‐Hong Dai,Quan Tao,Juan Chen
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:311 (1): 73-87 被引量:6
标识
DOI:10.1016/j.ejor.2023.04.044
摘要

The maximal covering location problem (MCLP) and the partial set covering location problem (PSCLP) are two fundamental problems in facility location and have widespread applications in practice. The MCLP determines a subset of facilities to open to maximize the demand of covered customers subject to a budget constraint on the cost of open facilities; and the PSCLP aims to minimize the cost of open facilities while requiring a certain amount of customer demand to be covered. Both problems can be modeled as mixed integer programming (MIP) formulations. Due to the intrinsic NP-hardness nature, however, it is a great challenge to solve them to optimality by MIP solvers, especially for large-scale cases. In this paper, we present five customized presolving methods to enhance the capability of employing MIP solvers in solving the two problems. The five presolving methods are designed to reduce the sizes of the problem formulation and the search tree of the branch-and-cut procedure. For planar problems with an extremely huge number of customers under realistic types of facility coverage, we show that the number of customers in the reduced problems can be bounded above by a quadratic polynomial of the number of facilities. By extensive numerical experiments, the five presolving methods are demonstrated to be effective in accelerating the solution process of solving the MCLP and PSCLP. Moreover, they enable to solve problems with billions of customers, which is at least one order of magnitude larger than those that can be tackled by previous approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助俊逸的翅膀采纳,获得10
刚刚
丸子发布了新的文献求助10
刚刚
林秋沐完成签到 ,获得积分10
刚刚
刚刚
猪猪hero发布了新的文献求助10
1秒前
充电宝应助旺旺采纳,获得10
2秒前
2秒前
2秒前
北北斤完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
欧大大发布了新的文献求助30
3秒前
科研通AI2S应助醉熏的灵采纳,获得10
3秒前
最专业发布了新的文献求助10
3秒前
莉莉发布了新的文献求助10
4秒前
universe_hhy完成签到,获得积分10
5秒前
彭于晏应助hhhh采纳,获得10
5秒前
云歇雨住完成签到,获得积分10
6秒前
Michelle发布了新的文献求助10
7秒前
ZQZ发布了新的文献求助10
8秒前
8秒前
imxiaobing完成签到,获得积分10
9秒前
luo发布了新的文献求助10
9秒前
10秒前
轻松方盒完成签到,获得积分10
10秒前
10秒前
情怀应助狂野白梅采纳,获得10
10秒前
隐形曼青应助jtj采纳,获得10
11秒前
莫凡完成签到,获得积分20
12秒前
12秒前
平常的g发布了新的文献求助10
13秒前
13秒前
14秒前
田様应助夏夏霞采纳,获得10
14秒前
double完成签到 ,获得积分10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
大个应助年轻代丝采纳,获得10
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454862
求助须知:如何正确求助?哪些是违规求助? 3050097
关于积分的说明 9020280
捐赠科研通 2738771
什么是DOI,文献DOI怎么找? 1502291
科研通“疑难数据库(出版商)”最低求助积分说明 694453
邀请新用户注册赠送积分活动 693159