An adaptive reinforcement learning-based multimodal data fusion framework for human–robot confrontation gaming

强化学习 人工智能 计算机科学 卷积神经网络 分类器(UML) 机器人 人工神经网络 传感器融合 机器学习
作者
Wen Qi,Haoyu Fan,Hamid Reza Karimi,Hang Su
出处
期刊:Neural Networks [Elsevier BV]
卷期号:164: 489-496 被引量:37
标识
DOI:10.1016/j.neunet.2023.04.043
摘要

Playing games between humans and robots have become a widespread human-robot confrontation (HRC) application. Although many approaches were proposed to enhance the tracking accuracy by combining different information, the problems of the intelligence degree of the robot and the anti-interference ability of the motion capture system still need to be solved. In this paper, we present an adaptive reinforcement learning (RL) based multimodal data fusion (AdaRL-MDF) framework teaching the robot hand to play Rock-Paper-Scissors (RPS) game with humans. It includes an adaptive learning mechanism to update the ensemble classifier, an RL model providing intellectual wisdom to the robot, and a multimodal data fusion structure offering resistance to interference. The corresponding experiments prove the mentioned functions of the AdaRL-MDF model. The comparison accuracy and computational time show the high performance of the ensemble model by combining k-nearest neighbor (k-NN) and deep convolutional neural network (DCNN). In addition, the depth vision-based k-NN classifier obtains a 100% identification accuracy so that the predicted gestures can be regarded as the real value. The demonstration illustrates the real possibility of HRC application. The theory involved in this model provides the possibility of developing HRC intelligence.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
玛卡巴卡完成签到,获得积分10
1秒前
1秒前
豪士赋完成签到,获得积分10
1秒前
科研通AI5应助捣蛋采纳,获得10
1秒前
2秒前
3秒前
苹果寇完成签到,获得积分10
3秒前
外向的惜文完成签到,获得积分10
3秒前
cdercder给云飞扬的求助进行了留言
3秒前
缥莲发布了新的文献求助10
4秒前
叶白山完成签到,获得积分10
4秒前
5秒前
5秒前
神勇雨双完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
独角Jing完成签到,获得积分10
7秒前
7秒前
蒋溶发布了新的文献求助10
7秒前
Shaco发布了新的文献求助10
7秒前
7秒前
睿智的Frankie完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
8秒前
9秒前
难过惜灵发布了新的文献求助10
10秒前
有长进发布了新的文献求助10
10秒前
大福发布了新的文献求助10
11秒前
11秒前
11秒前
易哒哒发布了新的文献求助10
11秒前
11秒前
12秒前
予陆与你完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735423
求助须知:如何正确求助?哪些是违规求助? 3279372
关于积分的说明 10014345
捐赠科研通 2996002
什么是DOI,文献DOI怎么找? 1643782
邀请新用户注册赠送积分活动 781471
科研通“疑难数据库(出版商)”最低求助积分说明 749400