钙钛矿(结构)
卤化物
钝化
光伏系统
材料科学
纳米技术
耐久性
能量转换效率
工程物理
光电子学
化学
物理
无机化学
图层(电子)
化学工程
电气工程
工程类
复合材料
作者
Yuanyuan Zhao,Huimin Xiang,Ran Ran,Wei Zhou,Wei Wang,Zongping Shao
标识
DOI:10.1016/j.jechem.2023.04.025
摘要
Perovskite solar cells (PSCs) as a rising star in the photovoltaic field have received rapidly increasing attention recently due to the boosting power conversion efficiencies (PCEs) from 3.8% to 25.7% in the last 13 years. Nevertheless, the conventional PSCs with three-dimensional (3D) halide perovskites as light absorbers suffer from inferior PCEs and poor durability under sunlight, high-temperature and humid conditions due to the high defect amount and structural instability of 3D perovskites, respectively. To tackle these crucial issues, lower-dimensional halide perovskites including zero-dimensional (0D), one-dimensional (1D), and two-dimensional (2D) perovskites have been employed as efficient passivators to boost the PCEs and durability of 3D-PSCs due to the high structural stability and superior resistance against moisture, heat and sunlight. Therefore, in order to achieve better understanding about the advantages and superiorities of combining low-dimensional perovskites with their 3D counterparts in improving the PCEs and durability of 3D-PSCs, the recent advances in the development and fabrication of mixed-dimensional PSCs with 1D/0D perovskites as passivators are summarized and discussed in the review. The superiority of 1D/0D perovskites as passivators over 2D counterparts, the passivation mechanism and the methods of 1D/0D perovskites are also presented and discussed. Furthermore, the rules to choose 1D/0D perovskites or relevant spacer cations are also emphasized. On this basis, several specific strategies to design and fabricate mixed-dimensional PSCs with 1D/0D perovskites are presented and discussed. Finally, the crucial challenges and future research directions of mixed-dimensional PSCs with 1D/0D perovskites as passivators are also proposed and discussed. This review will provide some useful insights for the future development of high-efficiency and durable mixed-dimensional PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI