A 1 km Global Carbon Flux Dataset Using In Situ Measurements and Deep Learning

初级生产 碳循环 碳通量 环境科学 遥感 卷积神经网络 植被(病理学) 焊剂(冶金) 随机森林 生态系统呼吸 深度学习 人工神经网络 计算机科学 气象学 生态系统 人工智能 地理 生物 病理 医学 冶金 材料科学 生态学
作者
Wei Shangguan,Zili Xiong,Vahid Nourani,Qingliang Li,Xingjie Lu,Lu Li,Feini Huang,Ye Zhang,Wenye Sun,Yongjiu Dai
出处
期刊:Forests [Multidisciplinary Digital Publishing Institute]
卷期号:14 (5): 913-913 被引量:8
标识
DOI:10.3390/f14050913
摘要

Global carbon fluxes describe the carbon exchange between land and atmosphere. However, already available global carbon fluxes datasets have not been adjusted by the available site data and deep learning tools. In this work, a global carbon fluxes dataset (named as GCFD) of gross primary productivity (GPP), terrestrial ecosystem respiration (RECO), and net ecosystem exchange (NEE) has been developed via a deep learning based convolutional neural network (CNN) model. The dataset has a spatial resolution of 1 km at three time steps per month from January 1999 to June 2020. Flux measurements were used as a training target while remote sensing of vegetation conditions and meteorological data were used as predictors. The results showed that CNN could outperform other commonly used machine learning methods such as random forest (RF) and artificial neural network (ANN) by leading to satisfactory performance with R2 values of the validation stage as 0.82, 0.72 and 0.62 for GPP, RECO, and NEE modelling, respectively. Thus, CNN trained using reanalysis meteorological data and remote sensing data was chosen to produce the global dataset. GCFD showed higher accuracy and more spatial details than some other global carbon flux datasets with reasonable spatial pattern and temporal variation. GCFD is also in accordance with vegetation conditions detected by remote sensing. Owing to the obtained results, GCFD can be a useful reference for various meteorological and ecological analyses and modelling, especially when high resolution carbon flux maps are required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鹿发布了新的文献求助10
1秒前
1秒前
DDDD发布了新的文献求助10
2秒前
4秒前
悠悠发布了新的文献求助10
5秒前
初学者完成签到,获得积分20
7秒前
9秒前
小蘑菇应助小鹿采纳,获得10
9秒前
卑微小谢发布了新的文献求助10
10秒前
11秒前
Ll_l完成签到,获得积分10
11秒前
sungyoo发布了新的文献求助10
12秒前
13秒前
15秒前
16秒前
yangxuxu发布了新的文献求助10
17秒前
小鹿完成签到,获得积分10
18秒前
19秒前
Enns完成签到 ,获得积分10
20秒前
21秒前
安详的冷安完成签到,获得积分10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
21秒前
SYLH应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
共享精神应助科研通管家采纳,获得10
22秒前
图图应助科研通管家采纳,获得50
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
余味应助科研通管家采纳,获得10
22秒前
慕青应助科研通管家采纳,获得10
22秒前
星辰大海应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
烟花应助想查文献的小黄采纳,获得10
24秒前
科研通AI5应助luxiaoyu采纳,获得10
24秒前
海派Hi完成签到 ,获得积分10
24秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3747447
求助须知:如何正确求助?哪些是违规求助? 3290072
关于积分的说明 10068175
捐赠科研通 3006197
什么是DOI,文献DOI怎么找? 1650817
邀请新用户注册赠送积分活动 786123
科研通“疑难数据库(出版商)”最低求助积分说明 751485