Cross-sensor remote sensing imagery super-resolution via an edge-guided attention-based network

计算机科学 GSM演进的增强数据速率 遥感 增采样 人工智能 图像传感器 特征(语言学) 残余物 计算机视觉 图像(数学) 算法 地理 语言学 哲学
作者
Zhonghang Qiu,Huanfeng Shen,Linwei Yue,Guizhou Zheng
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:199: 226-241 被引量:16
标识
DOI:10.1016/j.isprsjprs.2023.04.016
摘要

The deep learning based super-resolution (SR) methods have recently achieved remarkable progress in the reconstruction of ideally simulated high-quality remote sensing image datasets. However, due to the large variation in image quality caused by the complex degradation factors, their performance decreases dramatically on real-world images acquired by different satellite sensors. To this end, we propose a cross-sensor SR framework that consists of a cross-sensor degradation modeling strategy for bridging the gap between the images obtained by the source and target sensors, and an edge-guided attention-based SR (EGASR) network to promote the learning of high-frequency feature representation. Specifically, we build a degradation pool on the low-resolution (LR) target sensor to produce a degraded training dataset simulated from the high-resolution (HR) images obtained by the source sensor. Furthermore, the EGASR network, which employs the edge-guided residual attention block (EGRAB) to introduce implicit edge prior to enhance edge-related information, is embedded in the cross-sensor SR framework for reconstructing HR results with sharp details. The proposed method is applied on images from the Chinese Gaofen (GF) satellite sensors and compared to several representative SR methods. An ideally simulated GF-2 LR/HR image set with only downsampling considered is first used to evaluate the effectiveness of the proposed EGASR network. Moreover, GF-2/GF-1 and GF-2/GF-6 cross-sensor SR datasets are constructed by synthesizing GF-2 degraded image pairs with the degradation pools estimated from the GF-1 and GF-6 images, respectively. The results show that: 1) the proposed EGASR model shows superiority in reconstructing textural details and edge features, and achieves the best results among the state-of-art SR methods involved in comparison; 2) the cross-sensor SR framework significantly promotes the model’s ability to super-resolve real-world LR images acquired by the target satellite sensors, e.g., the NIQE values are improved by at least 30% and 34% on average with respect to other comparative methods for GF-2/GF-1 and GF-2/GF-6 datasets in the real experiments, respectively. Code is available at https://github.com/zhonghangqiu/EGASR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赎罪发布了新的文献求助10
1秒前
1秒前
想睡觉的面包酱完成签到,获得积分10
1秒前
我是老大应助危机的硬币采纳,获得10
2秒前
Jasper应助目标是博士毕业采纳,获得10
3秒前
斯文败类应助SPRETEND采纳,获得10
3秒前
南小歌完成签到,获得积分20
3秒前
oliv发布了新的文献求助10
3秒前
李爱国应助Sam采纳,获得10
4秒前
CY完成签到,获得积分10
4秒前
zyy发布了新的文献求助10
4秒前
烟花应助智博36采纳,获得10
4秒前
Lucas应助如意的梦秋采纳,获得10
5秒前
Murmures发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
YC驳回了浦肯野应助
6秒前
6秒前
晗月完成签到,获得积分10
7秒前
7秒前
务实的筝发布了新的文献求助10
7秒前
劲秉应助林梦婷采纳,获得10
7秒前
7秒前
科目三应助dagongren采纳,获得10
8秒前
8秒前
9秒前
9秒前
大力沛萍发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
大个应助iNk采纳,获得10
10秒前
arabidopsis发布了新的文献求助30
10秒前
桐桐应助Murmures采纳,获得10
11秒前
11秒前
lcl完成签到,获得积分10
12秒前
yu完成签到,获得积分10
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470540
求助须知:如何正确求助?哪些是违规求助? 3063510
关于积分的说明 9083726
捐赠科研通 2753934
什么是DOI,文献DOI怎么找? 1511152
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698178