3D DEM model simulation of asphalt mastics with sunflower oil

沥青 向日葵 计算机科学 石油工程 材料科学 计算机图形学(图像) 复合材料 地质学 数学 组合数学
作者
Gustavo Câmara,Rui Micaelo,Nuno Monteiro Azevedo
出处
期刊:Computational particle mechanics [Springer Science+Business Media]
卷期号:10 (6): 1569-1586 被引量:9
标识
DOI:10.1007/s40571-023-00574-1
摘要

Abstract A three-dimensional particle model, based on the asphalt mastic micro-structure representation following a discrete element model framework, was developed to investigate the influence of sunflower oil (rejuvenator) on the rheological properties of asphalt mastic. Dynamic shear rheometer tests in laboratory, for a frequency range of 0.1–20 Hz and temperatures in a range between 20 and 80 $$^{\circ }$$ C, were carried out in order to assess the viscoelastic behaviour of asphalt mastics containing different oil-to-bitumen content by mass proportions (2.5–20%). Master curves were constructed for two reference temperatures (30 $$^{\circ }$$ C and 50 $$^{\circ }$$ C). Experimental results showed that the increase in sunflower oil content resulted in a progressive decrease in viscosity. However, the rheological behaviour of the mastic containing the highest oil amount could not be properly represented in master curves, indicating that the specimen had a different rheological behaviour when compared with the lower oil contents responses. Numerical simulations of rheometer tests were carried out with an asphalt mastic particle assembly that emulated the experimental procedure. The viscoelastic contacts within the asphalt mastic assembly were simulated with a generalized Kelvin contact model. A calibration procedure was derived based on the fitting of laboratory data. The simulations were shown to have a good agreement with laboratory values. The average errors for the dynamic shear modulus and phase angle were 3.4% and 4.0%, respectively, considering both temperatures of analysis. Finally, a considerable improvement was accomplished in comparison with the numerical response obtained with the often-used Burgers model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马剑完成签到,获得积分10
刚刚
李健应助ringmo采纳,获得10
刚刚
1秒前
1秒前
1秒前
lalala发布了新的文献求助10
2秒前
wyj完成签到,获得积分10
3秒前
沉默寻凝发布了新的文献求助20
5秒前
5秒前
dmq发布了新的文献求助10
7秒前
peter应助槐序二三采纳,获得30
7秒前
buno发布了新的文献求助10
7秒前
塔莉娅发布了新的文献求助10
8秒前
8秒前
可问春风完成签到,获得积分10
8秒前
海德堡发布了新的文献求助10
11秒前
12秒前
哈力完成签到,获得积分10
12秒前
哈力发布了新的文献求助10
14秒前
liv发布了新的文献求助10
15秒前
Orange应助一只好果子采纳,获得10
16秒前
18秒前
monicaj完成签到 ,获得积分10
19秒前
21秒前
lalala发布了新的文献求助10
22秒前
19发布了新的文献求助10
22秒前
24秒前
一味地丶逞强完成签到,获得积分10
25秒前
26秒前
迅速山雁发布了新的文献求助10
26秒前
梅西82发布了新的文献求助10
29秒前
tt完成签到,获得积分10
29秒前
30秒前
30秒前
zero完成签到 ,获得积分10
30秒前
李健应助xiuxiu采纳,获得10
31秒前
33秒前
33秒前
荔枝驳回了peter应助
34秒前
lalala发布了新的文献求助10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Atmosphere-ice-ocean interactions in the Antarctic 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3679172
求助须知:如何正确求助?哪些是违规求助? 3232156
关于积分的说明 9801707
捐赠科研通 2943358
什么是DOI,文献DOI怎么找? 1613867
邀请新用户注册赠送积分活动 761904
科研通“疑难数据库(出版商)”最低求助积分说明 737106