现场可编程门阵列
图像传感器
计算机科学
CMOS芯片
热的
嵌入式系统
电子工程
人工智能
工程类
物理
气象学
作者
Janak Sharda,Madison Manley,Ankit Kaul,Wan–Tong Li,Muhannad S. Bakir,Shimeng Yu
标识
DOI:10.1109/edtm55494.2023.10102948
摘要
Deep learning algorithms for autonomous driving require significant data movement between the camera and the processor. We propose using 2.5D integration of a CMOS image sensor (CIS) and FPGA on silicon interposer to reduce the latency and energy consumption due to data movement. Thermal simulations of the full system show an increase in CIS temperature due to 2.5D integration. The reduction in energy consumption due to data movement is $48\times$ and in latency is $24\times$ .
科研通智能强力驱动
Strongly Powered by AbleSci AI