已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Learning Shared Representations for Recommendation with Dynamic Heterogeneous Graph Convolutional Networks

计算机科学 联营 协同过滤 图形 骨料(复合) 推荐系统 理论计算机科学 数据挖掘 依赖关系(UML) 情报检索 机器学习 人工智能 材料科学 复合材料
作者
Mengyuan Jing,Yanmin Zhu,Yanan Xu,Haobing Liu,Tianzi Zang,Chunyang Wang,Jiadi Yu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (4): 1-23 被引量:3
标识
DOI:10.1145/3565575
摘要

Graph Convolutional Networks (GCNs) have been widely used for collaborative filtering, due to their effectiveness in exploiting high-order collaborative signals. However, two issues have not been well addressed by existing studies. First, usually only one kind of information is utilized, i.e., user preference in user-item graphs or item dependency in item-item graphs. Second, they usually adopt static graphs, which cannot retain the temporal evolution of the information. These can limit the recommendation quality. To address these limitations, we propose to mine three kinds of information (user preference, item dependency, and user behavior similarity) and their temporal evolution by constructing multiple discrete dynamic heterogeneous graphs (i.e., a user-item dynamic graph, an item-item dynamic graph, and a user-subseq dynamic graph) from interaction data. A novel network (PDGCN) is proposed to learn the representations of users and items in these dynamic graphs. Moreover, we designed a structural neighbor aggregation module with novel pooling and convolution operations to aggregate the features of structural neighbors. We also design a temporal neighbor aggregation module based on self-attention mechanism to aggregate the features of temporal neighbors. We conduct extensive experiments on four real-world datasets. The results indicate that our approach outperforms several competing methods in terms of Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). Dynamic graphs are also shown to be effective in improving recommendation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不配.应助噗宝叽采纳,获得10
3秒前
无花果应助奇奇采纳,获得10
4秒前
所所应助xiewuhua采纳,获得10
5秒前
李D发布了新的文献求助20
5秒前
科研小牛马完成签到,获得积分10
5秒前
1111发布了新的文献求助10
5秒前
小二郎应助薛同学采纳,获得10
8秒前
8秒前
8秒前
英姑应助阿费采纳,获得10
9秒前
泥巴发布了新的文献求助10
9秒前
11秒前
wyyyyyyyt发布了新的文献求助50
13秒前
17秒前
神勇友易完成签到 ,获得积分10
17秒前
NexusExplorer应助1111采纳,获得10
19秒前
20秒前
喜极而泣的冬天完成签到 ,获得积分20
20秒前
22秒前
ta发布了新的文献求助10
25秒前
25秒前
张楠完成签到 ,获得积分10
26秒前
华仔应助peace采纳,获得10
27秒前
slby发布了新的文献求助10
28秒前
Harper完成签到 ,获得积分10
30秒前
结实智宸完成签到,获得积分10
30秒前
大模型应助小叶采纳,获得10
31秒前
33秒前
34秒前
脑洞疼应助旭旭汉堡包采纳,获得10
34秒前
37秒前
淡定成风完成签到,获得积分10
38秒前
平常的过客完成签到,获得积分10
42秒前
peace发布了新的文献求助10
42秒前
44秒前
45秒前
47秒前
47秒前
47秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234297
求助须知:如何正确求助?哪些是违规求助? 2880629
关于积分的说明 8216470
捐赠科研通 2548256
什么是DOI,文献DOI怎么找? 1377635
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302