Learning Shared Representations for Recommendation with Dynamic Heterogeneous Graph Convolutional Networks

计算机科学 联营 协同过滤 图形 骨料(复合) 推荐系统 理论计算机科学 数据挖掘 依赖关系(UML) 情报检索 机器学习 人工智能 材料科学 复合材料
作者
Mengyuan Jing,Yanmin Zhu,Yanan Xu,Haobing Liu,Tianzi Zang,Chunyang Wang,Jiadi Yu
出处
期刊:ACM Transactions on Knowledge Discovery From Data [Association for Computing Machinery]
卷期号:17 (4): 1-23 被引量:4
标识
DOI:10.1145/3565575
摘要

Graph Convolutional Networks (GCNs) have been widely used for collaborative filtering, due to their effectiveness in exploiting high-order collaborative signals. However, two issues have not been well addressed by existing studies. First, usually only one kind of information is utilized, i.e., user preference in user-item graphs or item dependency in item-item graphs. Second, they usually adopt static graphs, which cannot retain the temporal evolution of the information. These can limit the recommendation quality. To address these limitations, we propose to mine three kinds of information (user preference, item dependency, and user behavior similarity) and their temporal evolution by constructing multiple discrete dynamic heterogeneous graphs (i.e., a user-item dynamic graph, an item-item dynamic graph, and a user-subseq dynamic graph) from interaction data. A novel network (PDGCN) is proposed to learn the representations of users and items in these dynamic graphs. Moreover, we designed a structural neighbor aggregation module with novel pooling and convolution operations to aggregate the features of structural neighbors. We also design a temporal neighbor aggregation module based on self-attention mechanism to aggregate the features of temporal neighbors. We conduct extensive experiments on four real-world datasets. The results indicate that our approach outperforms several competing methods in terms of Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG). Dynamic graphs are also shown to be effective in improving recommendation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助张艺馨采纳,获得10
刚刚
tRNA完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
白河愁发布了新的文献求助10
1秒前
2秒前
馒头完成签到 ,获得积分10
2秒前
叮叮发布了新的文献求助10
2秒前
4秒前
33完成签到 ,获得积分10
5秒前
鱼猫发布了新的文献求助10
6秒前
西贝应助Xxsy采纳,获得10
6秒前
林夕完成签到 ,获得积分10
7秒前
拼搏的桐完成签到,获得积分10
7秒前
8秒前
cc完成签到 ,获得积分10
9秒前
不会回信息的猪完成签到,获得积分20
10秒前
ChengYonghui完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
bill完成签到,获得积分10
11秒前
孟龙威完成签到,获得积分10
12秒前
心理咨熊师完成签到,获得积分10
12秒前
微风打了烊完成签到 ,获得积分10
12秒前
JFP完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
CodeCraft应助biu采纳,获得10
15秒前
飞快的语蕊完成签到,获得积分10
16秒前
小程同学完成签到,获得积分10
17秒前
竹本完成签到 ,获得积分10
17秒前
Vanness发布了新的文献求助10
17秒前
pancake发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
浮游应助ZZZ采纳,获得10
20秒前
23秒前
23秒前
赘婿应助王小帅ok采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337