聚吡咯
材料科学
埃洛石
纳米复合材料
反射损耗
傅里叶变换红外光谱
纳米颗粒
化学工程
聚合
扫描电子显微镜
吸附
聚合物
复合材料
纳米技术
复合数
化学
有机化学
工程类
作者
Sajjad Tabar Maleki,Mohsen Babamoradi,Mojtaba Rouhi,Ali Maleki,Zoleikha Hajizadeh
标识
DOI:10.1016/j.synthmet.2022.117142
摘要
In this study, the halloysite nanotubes/polypyrrole/Fe3O4 (HPF) nanocomposites were synthesized, and their microwave absorption properties were investigated. Fe3O4 nanoparticles were synthesized by the hydrothermal method. By adding halloysite nanotubes (HNTs) to Fe3O4 nanoparticles and using the polypyrrole (PPy) as a conductive polymer, the in-situ polymerization process on the surface of HNTs and Fe3O4 nanoparticles was performed. The characteristic peaks of PPy and HNTs in Fourier transform infrared (FTIR) spectra confirmed the well-synthetized nanocomposites processes. Field emission scanning electron microscopy (FE-SEM) images illustrated the morphology and uniform structure of nanocomposites. The HPF1 (1 mL PPy) and the HPF2 ((2 mL PPy) nanocomposites exhibit a saturated magnetization of 26.22 emu/g and 13.94 emu/g, respectively. The microwave adsorbents were prepared by adding 20 wt% of synthesized nanocomposites to the resin. The complex permittivity and permeability parameters of adsorbents were investigated in the range of 8–12 GHz. The minimum reflection loss (RL) was − 31.18 dB at 10.58 GHz for HPF1 nanocomposites corresponding for a thickness of 3 mm. The results indicate that the HNTs as an additive can improve the adsorption properties of PPy/Fe3O4 nanocomposites.
科研通智能强力驱动
Strongly Powered by AbleSci AI