已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

aEYE: A deep learning system for video nystagmus detection

人工智能 计算机科学 眼球震颤 计算机视觉 眼球运动 像素 深度学习 医学 听力学
作者
Narayani Wagle,John Morkos,Jingyan Liu,Henry Reith,Joseph L. Greenstein,Kirby Gong,Indranuj Gangan,Daniil Pakhomov,Sanchit Hira,Oleg V. Komogortsev,David E. Newman‐Toker,Raimond L. Winslow,David S. Zee,Jorge Otero‐Millan,Kemar E. Green
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:13 被引量:15
标识
DOI:10.3389/fneur.2022.963968
摘要

Background Nystagmus identification and interpretation is challenging for non-experts who lack specific training in neuro-ophthalmology or neuro-otology. This challenge is magnified when the task is performed via telemedicine. Deep learning models have not been heavily studied in video-based eye movement detection. Methods We developed, trained, and validated a deep-learning system (aEYE) to classify video recordings as normal or bearing at least two consecutive beats of nystagmus. The videos were retrospectively collected from a subset of the monocular (right eye) video-oculography (VOG) recording used in the Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT) clinical trial (#NCT02483429). Our model was derived from a preliminary dataset representing about 10% of the total AVERT videos ( n = 435). The videos were trimmed into 10-sec clips sampled at 60 Hz with a resolution of 240 × 320 pixels. We then created 8 variations of the videos by altering the sampling rates (i.e., 30 Hz and 15 Hz) and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels). The dataset was labeled as “nystagmus” or “no nystagmus” by one expert provider. We then used a filtered image-based motion classification approach to develop aEYE. The model's performance at detecting nystagmus was calculated by using the area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results An ensemble between the ResNet-soft voting and the VGG-hard voting models had the best performing metrics. The AUROC, sensitivity, specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively. Our validated folds had an average AUROC, sensitivity, specificity, and accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created from the compressed videos decreased in accuracy as image sampling rate decreased from 60 Hz to 15 Hz. There was only minimal change in the accuracy of nystagmus detection when decreasing image resolution and keeping sampling rate constant. Conclusion Deep learning is useful in detecting nystagmus in 60 Hz video recordings as well as videos with lower image resolutions and sampling rates, making it a potentially useful tool to aid future automated eye-movement enabled neurologic diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助......采纳,获得10
3秒前
斯文败类应助犹豫念露采纳,获得20
4秒前
科研通AI5应助ponyy采纳,获得10
5秒前
8秒前
拉长的南松完成签到 ,获得积分10
10秒前
doctor_quyi完成签到,获得积分10
12秒前
沧海一粟完成签到 ,获得积分10
13秒前
yiteng发布了新的文献求助10
14秒前
Calyn完成签到 ,获得积分10
15秒前
夜话风陵杜完成签到 ,获得积分0
18秒前
Xiaoxiao应助唉呀妈呀采纳,获得10
21秒前
yiteng完成签到,获得积分10
22秒前
SSS完成签到,获得积分20
22秒前
hhl完成签到,获得积分10
23秒前
饱满含玉完成签到,获得积分10
23秒前
wing发布了新的文献求助30
25秒前
28秒前
29秒前
绝世冰淇淋完成签到 ,获得积分10
29秒前
29秒前
30秒前
30秒前
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
32秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助30
35秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助10
35秒前
dr1nk发布了新的文献求助10
35秒前
kingwill应助科研通管家采纳,获得20
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516225
求助须知:如何正确求助?哪些是违规求助? 3098559
关于积分的说明 9239838
捐赠科研通 2793621
什么是DOI,文献DOI怎么找? 1533141
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359