清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

aEYE: A deep learning system for video nystagmus detection

人工智能 计算机科学 眼球震颤 计算机视觉 眼球运动 像素 深度学习 医学 听力学
作者
Narayani Wagle,John Morkos,Jingyan Liu,Henry Reith,Joseph L. Greenstein,Kirby Gong,Indranuj Gangan,Daniil Pakhomov,Sanchit Hira,Oleg V. Komogortsev,David E. Newman‐Toker,Raimond L. Winslow,David S. Zee,Jorge Otero‐Millan,Kemar E. Green
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:13 被引量:15
标识
DOI:10.3389/fneur.2022.963968
摘要

Background Nystagmus identification and interpretation is challenging for non-experts who lack specific training in neuro-ophthalmology or neuro-otology. This challenge is magnified when the task is performed via telemedicine. Deep learning models have not been heavily studied in video-based eye movement detection. Methods We developed, trained, and validated a deep-learning system (aEYE) to classify video recordings as normal or bearing at least two consecutive beats of nystagmus. The videos were retrospectively collected from a subset of the monocular (right eye) video-oculography (VOG) recording used in the Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT) clinical trial (#NCT02483429). Our model was derived from a preliminary dataset representing about 10% of the total AVERT videos ( n = 435). The videos were trimmed into 10-sec clips sampled at 60 Hz with a resolution of 240 × 320 pixels. We then created 8 variations of the videos by altering the sampling rates (i.e., 30 Hz and 15 Hz) and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels). The dataset was labeled as “nystagmus” or “no nystagmus” by one expert provider. We then used a filtered image-based motion classification approach to develop aEYE. The model's performance at detecting nystagmus was calculated by using the area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results An ensemble between the ResNet-soft voting and the VGG-hard voting models had the best performing metrics. The AUROC, sensitivity, specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively. Our validated folds had an average AUROC, sensitivity, specificity, and accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created from the compressed videos decreased in accuracy as image sampling rate decreased from 60 Hz to 15 Hz. There was only minimal change in the accuracy of nystagmus detection when decreasing image resolution and keeping sampling rate constant. Conclusion Deep learning is useful in detecting nystagmus in 60 Hz video recordings as well as videos with lower image resolutions and sampling rates, making it a potentially useful tool to aid future automated eye-movement enabled neurologic diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卜哥完成签到 ,获得积分10
11秒前
美丽心情完成签到,获得积分10
30秒前
Yuki完成签到 ,获得积分10
41秒前
明理蜗牛发布了新的文献求助50
52秒前
寻找组织完成签到,获得积分10
59秒前
lanxinge完成签到 ,获得积分10
1分钟前
小丸子完成签到 ,获得积分0
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
lisa完成签到 ,获得积分10
1分钟前
海阔天空完成签到 ,获得积分10
1分钟前
nano完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
guoxihan完成签到,获得积分10
2分钟前
tranphucthinh完成签到,获得积分10
3分钟前
Ava应助科研通管家采纳,获得10
3分钟前
lyj完成签到 ,获得积分10
3分钟前
nanonamo完成签到,获得积分10
3分钟前
keke完成签到 ,获得积分10
4分钟前
SUNNYONE完成签到 ,获得积分10
4分钟前
数乱了梨花完成签到 ,获得积分0
5分钟前
LiangRen完成签到 ,获得积分10
5分钟前
lily完成签到 ,获得积分10
5分钟前
naczx完成签到,获得积分0
5分钟前
5分钟前
5分钟前
情怀应助英俊的秋白采纳,获得10
5分钟前
JJ完成签到 ,获得积分0
5分钟前
赵一完成签到 ,获得积分10
5分钟前
ys1008完成签到,获得积分10
5分钟前
朝夕之晖完成签到,获得积分10
5分钟前
Syan完成签到,获得积分10
5分钟前
喜喜完成签到,获得积分10
5分钟前
BMG完成签到,获得积分10
5分钟前
啪嗒大白球完成签到,获得积分10
5分钟前
cityhunter7777完成签到,获得积分10
5分钟前
美满惜寒完成签到,获得积分10
5分钟前
张浩林完成签到,获得积分10
5分钟前
CGBIO完成签到,获得积分10
5分钟前
洋芋饭饭完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4958025
求助须知:如何正确求助?哪些是违规求助? 4219196
关于积分的说明 13133332
捐赠科研通 4002249
什么是DOI,文献DOI怎么找? 2190284
邀请新用户注册赠送积分活动 1205015
关于科研通互助平台的介绍 1116677