aEYE: A deep learning system for video nystagmus detection

人工智能 计算机科学 眼球震颤 计算机视觉 眼球运动 像素 深度学习 医学 听力学
作者
Narayani Wagle,John Morkos,Jingyan Liu,Henry Reith,Joseph L. Greenstein,Kirby Gong,Indranuj Gangan,Daniil Pakhomov,Sanchit Hira,Oleg V. Komogortsev,David E. Newman‐Toker,Raimond L. Winslow,David S. Zee,Jorge Otero‐Millan,Kemar E. Green
出处
期刊:Frontiers in Neurology [Frontiers Media]
卷期号:13 被引量:15
标识
DOI:10.3389/fneur.2022.963968
摘要

Background Nystagmus identification and interpretation is challenging for non-experts who lack specific training in neuro-ophthalmology or neuro-otology. This challenge is magnified when the task is performed via telemedicine. Deep learning models have not been heavily studied in video-based eye movement detection. Methods We developed, trained, and validated a deep-learning system (aEYE) to classify video recordings as normal or bearing at least two consecutive beats of nystagmus. The videos were retrospectively collected from a subset of the monocular (right eye) video-oculography (VOG) recording used in the Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT) clinical trial (#NCT02483429). Our model was derived from a preliminary dataset representing about 10% of the total AVERT videos ( n = 435). The videos were trimmed into 10-sec clips sampled at 60 Hz with a resolution of 240 × 320 pixels. We then created 8 variations of the videos by altering the sampling rates (i.e., 30 Hz and 15 Hz) and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels). The dataset was labeled as “nystagmus” or “no nystagmus” by one expert provider. We then used a filtered image-based motion classification approach to develop aEYE. The model's performance at detecting nystagmus was calculated by using the area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results An ensemble between the ResNet-soft voting and the VGG-hard voting models had the best performing metrics. The AUROC, sensitivity, specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively. Our validated folds had an average AUROC, sensitivity, specificity, and accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created from the compressed videos decreased in accuracy as image sampling rate decreased from 60 Hz to 15 Hz. There was only minimal change in the accuracy of nystagmus detection when decreasing image resolution and keeping sampling rate constant. Conclusion Deep learning is useful in detecting nystagmus in 60 Hz video recordings as well as videos with lower image resolutions and sampling rates, making it a potentially useful tool to aid future automated eye-movement enabled neurologic diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY完成签到,获得积分10
1秒前
小凤发布了新的文献求助10
2秒前
chenjun7080完成签到,获得积分10
2秒前
非常完成签到,获得积分10
3秒前
赵念婉完成签到,获得积分10
4秒前
Lucas应助longlong采纳,获得10
5秒前
小大夫完成签到 ,获得积分10
6秒前
海洋完成签到,获得积分10
7秒前
朴素爆米花完成签到,获得积分10
8秒前
陈成完成签到,获得积分10
8秒前
嘟嘟豆806完成签到 ,获得积分10
9秒前
阔达幼珊完成签到,获得积分10
12秒前
天天快乐应助lxlcx采纳,获得30
12秒前
13秒前
123发布了新的文献求助10
13秒前
聚散流沙完成签到,获得积分10
13秒前
可可完成签到,获得积分10
14秒前
小科完成签到,获得积分10
14秒前
coolkid应助宁ning采纳,获得10
14秒前
直率盼夏完成签到,获得积分10
15秒前
15秒前
小凤完成签到,获得积分20
16秒前
啦啦啦发布了新的文献求助10
16秒前
分析完成签到 ,获得积分10
17秒前
可可发布了新的文献求助10
17秒前
嗯哼啊嘿嘿哟喂完成签到,获得积分10
18秒前
33完成签到 ,获得积分10
19秒前
英俊的铭应助科研通管家采纳,获得10
19秒前
花生仔应助科研通管家采纳,获得10
19秒前
花生仔应助科研通管家采纳,获得10
19秒前
花生仔应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
大个应助科研通管家采纳,获得10
19秒前
蒲蒲完成签到 ,获得积分10
21秒前
hindbind完成签到,获得积分10
22秒前
快乐人杰完成签到,获得积分10
23秒前
23秒前
路路完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953546
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093666
捐赠科研通 3229646
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869464
科研通“疑难数据库(出版商)”最低求助积分说明 801470