亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

aEYE: A deep learning system for video nystagmus detection

人工智能 计算机科学 眼球震颤 计算机视觉 眼球运动 像素 深度学习 医学 听力学
作者
Narayani Wagle,John Morkos,Jingyan Liu,Henry Reith,Joseph L. Greenstein,Kirby Gong,Indranuj Gangan,Daniil Pakhomov,Sanchit Hira,Oleg V. Komogortsev,David E. Newman‐Toker,Raimond L. Winslow,David S. Zee,Jorge Otero‐Millan,Kemar E. Green
出处
期刊:Frontiers in Neurology [Frontiers Media SA]
卷期号:13 被引量:15
标识
DOI:10.3389/fneur.2022.963968
摘要

Background Nystagmus identification and interpretation is challenging for non-experts who lack specific training in neuro-ophthalmology or neuro-otology. This challenge is magnified when the task is performed via telemedicine. Deep learning models have not been heavily studied in video-based eye movement detection. Methods We developed, trained, and validated a deep-learning system (aEYE) to classify video recordings as normal or bearing at least two consecutive beats of nystagmus. The videos were retrospectively collected from a subset of the monocular (right eye) video-oculography (VOG) recording used in the Acute Video-oculography for Vertigo in Emergency Rooms for Rapid Triage (AVERT) clinical trial (#NCT02483429). Our model was derived from a preliminary dataset representing about 10% of the total AVERT videos ( n = 435). The videos were trimmed into 10-sec clips sampled at 60 Hz with a resolution of 240 × 320 pixels. We then created 8 variations of the videos by altering the sampling rates (i.e., 30 Hz and 15 Hz) and image resolution (i.e., 60 × 80 pixels and 15 × 20 pixels). The dataset was labeled as “nystagmus” or “no nystagmus” by one expert provider. We then used a filtered image-based motion classification approach to develop aEYE. The model's performance at detecting nystagmus was calculated by using the area under the receiver-operating characteristic curve (AUROC), sensitivity, specificity, and accuracy. Results An ensemble between the ResNet-soft voting and the VGG-hard voting models had the best performing metrics. The AUROC, sensitivity, specificity, and accuracy were 0.86, 88.4, 74.2, and 82.7%, respectively. Our validated folds had an average AUROC, sensitivity, specificity, and accuracy of 0.86, 80.3, 80.9, and 80.4%, respectively. Models created from the compressed videos decreased in accuracy as image sampling rate decreased from 60 Hz to 15 Hz. There was only minimal change in the accuracy of nystagmus detection when decreasing image resolution and keeping sampling rate constant. Conclusion Deep learning is useful in detecting nystagmus in 60 Hz video recordings as well as videos with lower image resolutions and sampling rates, making it a potentially useful tool to aid future automated eye-movement enabled neurologic diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
16秒前
寻道图强应助ovo采纳,获得60
20秒前
36秒前
37秒前
39秒前
1分钟前
1分钟前
1分钟前
LUO发布了新的文献求助10
1分钟前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
外向的芒果应助ovo采纳,获得110
3分钟前
Onewayvv完成签到,获得积分10
3分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
4分钟前
4分钟前
过氧化氢给过氧化氢的求助进行了留言
4分钟前
ovo完成签到,获得积分10
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
CC发布了新的文献求助10
5分钟前
5分钟前
Shawn_54发布了新的文献求助10
5分钟前
stephanie_han完成签到,获得积分10
5分钟前
Shawn_54完成签到,获得积分10
5分钟前
浮游应助3sigma采纳,获得10
5分钟前
6分钟前
6分钟前
爱科研的小凡完成签到,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509712
求助须知:如何正确求助?哪些是违规求助? 4604500
关于积分的说明 14489844
捐赠科研通 4539326
什么是DOI,文献DOI怎么找? 2487475
邀请新用户注册赠送积分活动 1469865
关于科研通互助平台的介绍 1442088