Heart disease prediction based on pre-trained deep neural networks combined with principal component analysis

计算机科学 人工智能 主成分分析 人工神经网络 机器学习 组分(热力学) 模式识别(心理学) 物理 热力学
作者
Diman Hassan,Haval I. Hussein,Masoud Muhammed Hassan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104019-104019 被引量:41
标识
DOI:10.1016/j.bspc.2022.104019
摘要

Heart Disease (HD) is often regarded as one of the deadliest human diseases. Therefore, early prediction of HD risks is crucial for prevention and treatment. Unfortunately, current clinical procedures for diagnosing HD are costly and often require an expert level of intervention. In response to this issue, researchers have recently developed various intelligent systems for the automated diagnosis of HD. Among the developed approaches, those based on artificial neural networks (ANNs) have gained more popularity due to their promising prediction results. However, to the authors' knowledge, no research has attempted to exploit ANNs for feature extraction. Hence, research into bridging this gap is worthwhile for more excellent predictions. Motivated by this fact, this research proposes a new approach for HD prediction, utilizing a pre-trained Deep Neural Network (DNN) for feature extraction, Principal Component Analysis (PCA) for dimensionality reduction, and Logistic Regression (LR) for prediction. Cleveland, a publicly accessible HD dataset, was used to investigate the efficacy of the proposed approach (DNN + PCA + LR). Experimental results revealed that the proposed approach performs well on both the training and testing data, with accuracy rates of 91.79% and 93.33%, respectively. Furthermore, the proposed approach exhibited better performance when compared with the state-of-the-art approaches under most of the evaluation metrics used.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjx发布了新的文献求助20
2秒前
无私语儿发布了新的文献求助10
2秒前
hcy发布了新的文献求助10
2秒前
wjx发布了新的文献求助100
2秒前
wjx发布了新的文献求助100
2秒前
wjx发布了新的文献求助30
2秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助30
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助30
3秒前
wjx发布了新的文献求助30
3秒前
wjx发布了新的文献求助20
3秒前
wjx发布了新的文献求助10
3秒前
wjx发布了新的文献求助10
3秒前
5秒前
5秒前
糊涂的凡松应助研友_LMBAXn采纳,获得10
6秒前
ZXJ发布了新的文献求助10
6秒前
7秒前
sketch完成签到,获得积分10
7秒前
共享精神应助RRR采纳,获得10
7秒前
入门的橙橙完成签到 ,获得积分10
8秒前
mach发布了新的文献求助30
9秒前
博弈春秋应助连寒香采纳,获得10
10秒前
慕青应助汤谷栽扶桑采纳,获得30
10秒前
ytolll完成签到,获得积分20
10秒前
苏卿应助wjx采纳,获得10
11秒前
领导范儿应助wjx采纳,获得10
11秒前
程希应助wjx采纳,获得10
11秒前
科研通AI5应助wjx采纳,获得10
11秒前
郑恩熙发布了新的文献求助100
11秒前
斯文败类应助虞无声采纳,获得10
13秒前
潇洒的冷玉完成签到 ,获得积分10
13秒前
jinchen发布了新的文献求助10
14秒前
14秒前
UP完成签到,获得积分10
15秒前
15秒前
传奇3应助l739744402采纳,获得10
16秒前
MEST发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557834
求助须知:如何正确求助?哪些是违规求助? 3132963
关于积分的说明 9399844
捐赠科研通 2832995
什么是DOI,文献DOI怎么找? 1557221
邀请新用户注册赠送积分活动 727141
科研通“疑难数据库(出版商)”最低求助积分说明 716197