Solving constrained optimization problems via multifactorial evolution

数学优化 差异进化 最优化问题 计算机科学 水准点(测量) 杠杆(统计) 进化计算 进化算法 人口 多群优化 数学 人工智能 大地测量学 社会学 人口学 地理
作者
Bing-Chuan Wang,Zhizhong Liu,Song Wu
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:127: 109392-109392 被引量:1
标识
DOI:10.1016/j.asoc.2022.109392
摘要

As a new paradigm in the field of evolutionary computation, multifactorial evolution has become more and more popular since its inception. It attempts to solve multiple optimization problems simultaneously using a single evolving population. Due to the implicit knowledge transfer, multifactorial evolution exhibits the potential to solve complex optimization problems. This paper tries to take advantage of multifactorial evolution to solve constrained optimization problems (COPs). To this end, we derive two different optimization problems from the considered COP. Theoretical analysis reveals that the optima of these two problems are exactly identical to the feasible optima of the original COP. Thus, the advantages of knowledge transfer can be used adequately. In addition, these two problems focus more on the objective function and the constraints, respectively. By solving them concurrently, we can achieve the balance between constraints and objective function, which is of essential importance in constrained evolutionary optimization. Moreover, a multifactorial differential evolution is developed, which can leverage the merits of multifactorial evolution and differential evolution effectively. To tackle complex COPs, a diversity strategy is designed for population diversity maintenance. Extensive experiments on benchmark test sets and engineering optimization problems have demonstrated the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
下雨天完成签到,获得积分10
刚刚
霡霂完成签到,获得积分10
1秒前
Hello应助cwm采纳,获得10
2秒前
巧巧艾完成签到,获得积分10
2秒前
3秒前
waynechang完成签到,获得积分10
3秒前
柔弱的兔子完成签到,获得积分10
4秒前
方大完成签到,获得积分10
4秒前
123456完成签到,获得积分10
5秒前
5秒前
6秒前
不必要再讨论适合与否完成签到,获得积分0
6秒前
guo完成签到,获得积分10
6秒前
王ccccc完成签到,获得积分10
7秒前
xshzhou完成签到,获得积分10
7秒前
嵇南露完成签到,获得积分10
8秒前
zip完成签到,获得积分10
8秒前
聪慧的凝海完成签到 ,获得积分10
9秒前
Laputa完成签到,获得积分10
9秒前
10秒前
南巷完成签到,获得积分10
10秒前
开心蛋挞发布了新的文献求助10
10秒前
文献求助完成签到,获得积分10
11秒前
庞威完成签到 ,获得积分10
12秒前
laii完成签到,获得积分10
12秒前
66完成签到 ,获得积分10
13秒前
huangsi完成签到,获得积分10
13秒前
13秒前
冬月完成签到,获得积分10
13秒前
CL完成签到,获得积分10
14秒前
石敢当完成签到,获得积分10
14秒前
鸣笛应助科研通管家采纳,获得20
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
15秒前
小手冰凉发布了新的文献求助10
15秒前
苹果洋葱完成签到,获得积分10
15秒前
生动曲奇完成签到,获得积分10
16秒前
佐佐完成签到,获得积分10
16秒前
16秒前
个性无声完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855