Free$\rm ^{3}$Net: Gliding Free, Orientation Free, and Anchor Free Network for Oriented Object Detection

计算机科学 目标检测 方向(向量空间) 人工智能 跳跃式监视 代表(政治) 最小边界框 对象(语法) 模棱两可 符号 计算机视觉 模式识别(心理学) 数学 图像(数学) 程序设计语言 几何学 算术 政治 政治学 法学
作者
Zhonghong Ou,Zhongjie Chen,Shengyi Shen,Lina Fan,Siyuan Yao,Meina Song,Pan Hui
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 7089-7100 被引量:1
标识
DOI:10.1109/tmm.2022.3217397
摘要

Object detection for aerial images has achieved remarkable progress in recent years. Nevertheless, most exiting studies do not differentiate oriented object detection from horizontal detection. Certain schemes ignore the ambiguity of oriented object representation and leverage label assignment designed for horizontal object detection directly. Consequently, it leads to unstable training and causes performance degradation, because high-quality samples surrounding the oriented bounding boxes can not be leveraged effectively. To address this problem, we propose a gliding Free, orientation Free, and anchor Free Network (Free $\rm ^{3}$ Net) with high-efficiency for oriented object detection. Specifically, we propose an unambiguous oriented object representation scheme, named FreeGliding, by gliding the projection points of samples on each edge of horizontal bounding boxes. It makes the detection largely free from representation ambiguity and multi-task dependency. To overcome the restrictions of label assignment, we put forward a novel Loss-aware Outer Sample Selection (LOSS) scheme, which takes into consideration spatial information and localization capability to retain high-quality samples surrounding the objects. Moreover, we introduce an Oriented Feature Fusion (OFF) scheme to tackle feature alignment by adjusting the receptive field and fusing oriented features dynamically. Experimental results on two large-scale remote sensing datasets HRSC2016 and DOTA demonstrate that Free $\rm ^{3}$ Net outperforms the state-of-the-art schemes with a large margin. We hope our work can inspire rethinking the design of anchor-free detectors, and serve as a strong baseline for oriented object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琪玛苏发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
666完成签到,获得积分20
2秒前
李小伟发布了新的文献求助10
2秒前
研友_VZG7GZ应助xmf采纳,获得10
2秒前
高高远山发布了新的文献求助10
3秒前
华仔应助可爱的凛采纳,获得10
3秒前
3秒前
4秒前
日出发布了新的文献求助10
4秒前
Glorious完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助50
6秒前
悦耳的依风完成签到,获得积分20
6秒前
梁十八发布了新的文献求助10
7秒前
柠檬汽水发布了新的文献求助10
7秒前
龙弟弟发布了新的文献求助10
7秒前
RN发布了新的文献求助10
7秒前
霜之哀伤完成签到,获得积分10
8秒前
黄菠萝发布了新的文献求助10
8秒前
FIN应助琪玛苏采纳,获得200
9秒前
明理映真发布了新的文献求助10
11秒前
11秒前
螳螂和煤气罐完成签到 ,获得积分10
11秒前
wfwl完成签到,获得积分10
11秒前
zz发布了新的文献求助10
12秒前
追寻冰淇淋应助123采纳,获得50
12秒前
13秒前
ding应助柠檬汽水采纳,获得10
14秒前
zpj完成签到 ,获得积分10
15秒前
15秒前
Dr.Tang发布了新的文献求助10
15秒前
16秒前
忧伤的皮皮虾完成签到,获得积分10
17秒前
zzzkyt发布了新的文献求助50
17秒前
17秒前
Wanfeng应助llljiaozi采纳,获得50
18秒前
可爱的凛发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959467
求助须知:如何正确求助?哪些是违规求助? 3505690
关于积分的说明 11125214
捐赠科研通 3237503
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802859