已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

JSENSE‐Pro: Joint sensitivity estimation and image reconstruction in parallel imaging using pre‐learned subspaces of coil sensitivity functions

子空间拓扑 计算机科学 灵敏度(控制系统) 线性子空间 压缩传感 迭代重建 校准 人工智能 算法 概率逻辑 模式识别(心理学) 数学 统计 几何学 电子工程 工程类
作者
Lihong Tang,Yibo Zhao,Yudu Li,Rong Guo,Bingyang Cai,Jia Wang,Yao Li,Zhi‐Pei Liang,Xi Peng,Jie Luo
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (4): 1531-1542 被引量:4
标识
DOI:10.1002/mrm.29548
摘要

Purpose To improve calibrationless parallel imaging using pre‐learned subspaces of coil sensitivity functions. Theory and Methods A subspace‐based joint sensitivity estimation and image reconstruction method was developed for improved parallel imaging with no calibration data. Specifically, we proposed to use a probabilistic subspace model to capture prior information of the coil sensitivity functions from previous scans acquired using the same receiver system. Both the subspace basis and coefficient distributions were learned from a small set of training data. The learned subspace model was then incorporated into the regularized reconstruction formalism that includes a sparsity prior. The nonlinear optimization problem was solved using alternating minimization algorithm. Public fastMRI brain dataset was retrospectively undersampled by different schemes for performance evaluation of the proposed method. Results With no calibration data, the proposed method consistently produced the most accurate coil sensitivity estimation and highest quality image reconstructions at all acceleration factors tested in comparison with state‐of‐the‐art methods including JSENSE, DeepSENSE, P‐LORAKS, and Sparse BLIP. Our results are comparable to or even better than those from SparseSENSE, which used calibration data for sensitivity estimation. The work also demonstrated that the probabilistic subspace model learned from T 2 w data can be generalized to aiding the reconstruction of FLAIR data acquired from the same receiver system. Conclusion A subspace‐based method named JSENSE‐Pro has been proposed for accelerated parallel imaging without the acquisition of companion calibration data. The method is expected to further enhance the practical utility of parallel imaging, especially in applications where calibration data acquisition is not desirable or limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孤独梦安发布了新的文献求助10
3秒前
3秒前
wdd发布了新的文献求助10
3秒前
扶摇完成签到 ,获得积分10
4秒前
隐形曼青应助大意的鹤采纳,获得10
4秒前
爆米花应助落尽海采纳,获得10
5秒前
7秒前
baihehuakai完成签到 ,获得积分10
9秒前
11秒前
夏天完成签到,获得积分10
11秒前
Chen完成签到,获得积分10
13秒前
14秒前
14秒前
孙翘楚完成签到,获得积分10
16秒前
18秒前
Ming Chen发布了新的文献求助10
19秒前
yeah发布了新的文献求助10
20秒前
23秒前
24秒前
24秒前
顾末完成签到,获得积分10
24秒前
林艾祎发布了新的文献求助10
25秒前
小明应助handsomecat采纳,获得10
25秒前
英勇的沉鱼完成签到 ,获得积分10
25秒前
牧歌完成签到 ,获得积分0
27秒前
卡西诺玛完成签到,获得积分10
27秒前
Chen发布了新的文献求助10
29秒前
大意的鹤发布了新的文献求助10
30秒前
Ming Chen完成签到,获得积分10
30秒前
31秒前
Criminology34应助贝贝采纳,获得10
31秒前
32秒前
哈哈哈完成签到 ,获得积分10
33秒前
33秒前
33秒前
浮游应助郭子仪采纳,获得10
34秒前
合适尔蝶发布了新的文献求助10
34秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312489
求助须知:如何正确求助?哪些是违规求助? 4456148
关于积分的说明 13865749
捐赠科研通 4344664
什么是DOI,文献DOI怎么找? 2386013
邀请新用户注册赠送积分活动 1380317
关于科研通互助平台的介绍 1348719