JSENSE‐Pro: Joint sensitivity estimation and image reconstruction in parallel imaging using pre‐learned subspaces of coil sensitivity functions

子空间拓扑 计算机科学 灵敏度(控制系统) 线性子空间 压缩传感 迭代重建 校准 人工智能 算法 概率逻辑 模式识别(心理学) 数学 统计 几何学 电子工程 工程类
作者
Lihong Tang,Yibo Zhao,Yudu Li,Rong Guo,Bingyang Cai,Jia Wang,Yao Li,Zhi‐Pei Liang,Xi Peng,Jie Luo
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:89 (4): 1531-1542 被引量:4
标识
DOI:10.1002/mrm.29548
摘要

Purpose To improve calibrationless parallel imaging using pre‐learned subspaces of coil sensitivity functions. Theory and Methods A subspace‐based joint sensitivity estimation and image reconstruction method was developed for improved parallel imaging with no calibration data. Specifically, we proposed to use a probabilistic subspace model to capture prior information of the coil sensitivity functions from previous scans acquired using the same receiver system. Both the subspace basis and coefficient distributions were learned from a small set of training data. The learned subspace model was then incorporated into the regularized reconstruction formalism that includes a sparsity prior. The nonlinear optimization problem was solved using alternating minimization algorithm. Public fastMRI brain dataset was retrospectively undersampled by different schemes for performance evaluation of the proposed method. Results With no calibration data, the proposed method consistently produced the most accurate coil sensitivity estimation and highest quality image reconstructions at all acceleration factors tested in comparison with state‐of‐the‐art methods including JSENSE, DeepSENSE, P‐LORAKS, and Sparse BLIP. Our results are comparable to or even better than those from SparseSENSE, which used calibration data for sensitivity estimation. The work also demonstrated that the probabilistic subspace model learned from T 2 w data can be generalized to aiding the reconstruction of FLAIR data acquired from the same receiver system. Conclusion A subspace‐based method named JSENSE‐Pro has been proposed for accelerated parallel imaging without the acquisition of companion calibration data. The method is expected to further enhance the practical utility of parallel imaging, especially in applications where calibration data acquisition is not desirable or limited.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
ll发布了新的文献求助10
刚刚
1秒前
1秒前
马荣发布了新的文献求助10
2秒前
chanhow完成签到,获得积分10
2秒前
情怀应助一米阳光采纳,获得10
3秒前
彭于晏应助pililili采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
xue完成签到 ,获得积分10
5秒前
5秒前
Drwenlu发布了新的文献求助10
6秒前
苏东方完成签到,获得积分10
6秒前
123完成签到,获得积分10
7秒前
Tara应助Patricksun采纳,获得10
10秒前
suchui发布了新的文献求助10
11秒前
11秒前
魔幻的寒松完成签到,获得积分10
11秒前
to_ooooo发布了新的文献求助10
11秒前
orixero应助mayumei采纳,获得10
11秒前
ASDq完成签到,获得积分10
11秒前
xiaxiao完成签到,获得积分0
12秒前
乐乐应助ll采纳,获得10
13秒前
guittt发布了新的文献求助10
13秒前
15秒前
简单花花发布了新的文献求助10
15秒前
16秒前
zzzggc完成签到,获得积分10
17秒前
20秒前
moon发布了新的文献求助10
22秒前
zzzggc发布了新的文献求助10
23秒前
25秒前
许诺完成签到,获得积分10
26秒前
浮云完成签到,获得积分20
26秒前
27秒前
SUMMER完成签到,获得积分20
28秒前
to_ooooo完成签到,获得积分10
29秒前
文艺友绿完成签到,获得积分20
29秒前
29秒前
zhangmin发布了新的文献求助10
30秒前
浮云发布了新的文献求助30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492156
求助须知:如何正确求助?哪些是违规求助? 4590429
关于积分的说明 14430292
捐赠科研通 4522780
什么是DOI,文献DOI怎么找? 2478060
邀请新用户注册赠送积分活动 1463106
关于科研通互助平台的介绍 1435756