Composite Data Driven-Based Adaptive Control for a Piezoelectric Linear Motor

控制理论(社会学) 控制器(灌溉) 自适应控制 直线电机 工程类 控制工程 非线性系统 噪音(视频) 计算机科学 控制(管理) 物理 人工智能 机械工程 量子力学 农学 图像(数学) 生物
作者
Yifan Wang,Miaolei Zhou,Dawei Hou,Wenjing Cao,Xiaoliang Huang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-12 被引量:6
标识
DOI:10.1109/tim.2022.3216412
摘要

Piezoelectric linear motors play an important role in ultraprecision manufacturing technology. However, the complex nonlinear relationship between the input and output of the piezoelectric linear motors limits their further application. In this article, to achieve precise motion control for a piezoelectric linear motor, a composite data-driven-based adaptive control method is proposed, consisting of a correction controller, model-free adaptive control (MFAC), and low pass filter. The proposed control method addresses the demand for a precise model of the piezoelectric linear motor and solely relies on the linear model and input–output measurement data. First, an experimental test is implemented to analyze the complex nonlinearity between the input and output signals of the controlled system, and a correction control is employed based on the dynamic linear sub-model of the piezoelectric linear motor to improve its dynamic and static characteristics. Then, to avoid the influence of unmodeled dynamics, such as inherent nonlinearity and external vibration, an MFAC is established as a feedback controller using data-driven technology. In addition, a low pass filter is incorporated into the feedback loop to eliminate high-frequency measurement noise in the system, thus improving the transient response of the MFAC method. Finally, the theoretical analysis of the error convergence is presented. The effectiveness of the proposed method is verified via comparisons with a correction control method, correction control-based digital sliding-mode control (DSMC) method, and correction control-based MFAC method. The experimental results indicate that the proposed control method is suitable for engineering applications. In particular, the root-mean-square error (RMSE) for the third-order S-curve tracking using the proposed is reduced by more than 15%, compared with the RMSEs for the cases with contrast control methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duha发布了新的文献求助10
刚刚
1秒前
Green发布了新的文献求助10
1秒前
1秒前
1秒前
Anthony_潇完成签到,获得积分10
1秒前
SYLH应助碧蓝的母鸡采纳,获得10
1秒前
1秒前
2秒前
Orange应助新新采纳,获得30
2秒前
3秒前
太想毕业了完成签到,获得积分10
4秒前
年轻的冬亦完成签到,获得积分10
4秒前
5秒前
眨眼发布了新的文献求助10
5秒前
5秒前
能干的向真应助lolo采纳,获得10
5秒前
5秒前
5秒前
Green完成签到,获得积分10
5秒前
布洛芬发布了新的文献求助10
6秒前
无000发布了新的文献求助10
6秒前
纯真忆安发布了新的文献求助10
6秒前
白白SAMA123发布了新的文献求助10
6秒前
小苏同学应助文艺向日葵采纳,获得10
7秒前
7秒前
7秒前
干净的迎荷完成签到,获得积分10
8秒前
柠檬发布了新的文献求助30
8秒前
开心荔枝关注了科研通微信公众号
8秒前
NexusExplorer应助月月采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
景绝义发布了新的文献求助10
9秒前
非常六加一完成签到,获得积分10
9秒前
扎心应助huan采纳,获得10
9秒前
Sue完成签到,获得积分10
9秒前
打打应助嗯嗯嗯采纳,获得10
10秒前
正直远望发布了新的文献求助10
10秒前
KST发布了新的文献求助10
10秒前
科目三应助yang采纳,获得10
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961408
求助须知:如何正确求助?哪些是违规求助? 3507744
关于积分的说明 11137921
捐赠科研通 3240204
什么是DOI,文献DOI怎么找? 1790848
邀请新用户注册赠送积分活动 872587
科研通“疑难数据库(出版商)”最低求助积分说明 803288