亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bayesian Latent Variable Model for Analysis of Empathic Accuracy

心理学 贝叶斯概率 相关性 潜变量 差异(会计) 感知 认知心理学 社会心理学 人工智能 计算机科学 数学 几何学 会计 业务 神经科学
作者
Linh Nghiem,Benjamin A. Tabak,Zachary Wallmark,Talha Alvi,Jing Cao
出处
期刊:Emerging topics in statistics and biostatistics 卷期号:: 201-214
标识
DOI:10.1007/978-3-031-14525-4_10
摘要

Empathic accuracy (EA), defined as the ability to accurately understand the thoughts and emotions of others, has become a well-studied phenomenon in social and clinical psychology. A widely used computer-based EA paradigm compares perceivers’ ratings of targets’ feelings or affective states with the ratings of target themselves (the true ratings) and uses correlation or its monotonic transformation as a measure of EA. However, correlation has a number of notable limitations. In particular, perceivers may differ in their rating patterns, but still have similar overall correlations. To overcome the limitations, we propose a Bayesian latent variable model that decomposes EA into two separate dimensions—discrimination and variability. Discrimination measures perceivers’ sensitivity in relation to the true ratings, and variability measures the variance of random error in perceiver’s perceptions. Similar to the conventional correlation, the Bayesian model is able to measure the overall level of the association between perceiver and target, but more importantly, the Bayesian approach can provide insights into how perceivers differ in their EA. We demonstrate the advantages of the new EA measures in two case studies. The proposed Bayesian model has a simple specification and is easy to use in practice due to its straightforward implementation in popular software. The R code is included in the supplementary material.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速服饰完成签到,获得积分10
1秒前
9秒前
SSS发布了新的文献求助10
14秒前
30秒前
Edibletrio完成签到,获得积分20
37秒前
Edibletrio关注了科研通微信公众号
48秒前
book完成签到 ,获得积分10
49秒前
zwang688完成签到,获得积分10
56秒前
热情的c99发布了新的文献求助30
59秒前
1分钟前
英俊的觅露完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
cowmoon发布了新的文献求助10
1分钟前
明理瑾瑜发布了新的文献求助10
1分钟前
小小的飞机完成签到,获得积分10
1分钟前
王旭阳完成签到,获得积分10
1分钟前
科研狗的春天完成签到 ,获得积分10
1分钟前
酷波er应助明理瑾瑜采纳,获得10
1分钟前
儒雅的十八完成签到,获得积分10
1分钟前
1分钟前
1分钟前
明亮的老四完成签到 ,获得积分10
1分钟前
李健的小迷弟应助Grinde采纳,获得10
1分钟前
吃了吃了完成签到,获得积分10
1分钟前
TEMPO发布了新的文献求助10
1分钟前
NexusExplorer应助霸气乐菱采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
合一海盗完成签到,获得积分10
1分钟前
Worenxian完成签到 ,获得积分10
1分钟前
汉堡包应助老鼠耗子采纳,获得10
1分钟前
1分钟前
Yu完成签到 ,获得积分10
1分钟前
赞zan完成签到,获得积分10
1分钟前
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714334
求助须知:如何正确求助?哪些是违规求助? 5222944
关于积分的说明 15273149
捐赠科研通 4865786
什么是DOI,文献DOI怎么找? 2612363
邀请新用户注册赠送积分活动 1562482
关于科研通互助平台的介绍 1519740