CVAR公司
数学优化
阻截
拉格朗日松弛
稳健优化
计算机科学
最优化问题
凸优化
放松(心理学)
流量网络
数学
预期短缺
正多边形
风险管理
工程类
心理学
航空航天工程
几何学
经济
管理
社会心理学
作者
Utsav Sadana,Erick Delage
出处
期刊:Informs Journal on Computing
日期:2022-12-06
卷期号:35 (1): 216-232
被引量:2
标识
DOI:10.1287/ijoc.2022.1257
摘要
Conditional value at risk (CVaR) is widely used to account for the preferences of a risk-averse agent in extreme loss scenarios. To study the effectiveness of randomization in interdiction problems with an interdictor that is both risk- and ambiguity-averse, we introduce a distributionally robust maximum flow network interdiction problem in which the interdictor randomizes over the feasible interdiction plans in order to minimize the worst case CVaR of the maximum flow with respect to both the unknown distribution of the capacity of the arcs and the interdictor’s own randomized strategy. Using the size of the uncertainty set, we control the degree of conservatism in the model and reformulate the interdictor’s distributionally robust optimization problem as a bilinear optimization problem. For solving this problem to any given optimality level, we devise a spatial branch-and-bound algorithm that uses the McCormick inequalities and reduced reformulation linearization technique to obtain a convex relaxation of the problem. We also develop a column-generation algorithm to identify the optimal support of the convex relaxation, which is then used in the coordinate descent algorithm to determine the upper bounds. The efficiency and convergence of the spatial branch-and-bound algorithm is established in numerical experiments. Further, our numerical experiments show that randomized strategies can have significantly better performance than optimal deterministic ones. History: Accepted by David Alderson, Area Editor for Network Optimization: Algorithms & Applications. Funding: The first author’s research is supported by a Group for Research in Decision Analysis postdoctoral fellowship and Fonds de Recherche du Québec–Nature et Technologies postdoctoral research scholarship [Grants 275296 and 301065]. The second author acknowledges support from the Canadian Natural Sciences and Engineering Research Council and the Canada Research Chair program [Grants RGPIN-2016-05208, 492997-2016, and 950-230057]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/ijoc.2022.1257 . The data file and codes are posted on GitHub ( https://github.com/Utsav19/Value-of-Randomization ).
科研通智能强力驱动
Strongly Powered by AbleSci AI