Systematic Study of in Vitro Selection Stringency Reveals How To Enrich High-Affinity Aptamers

适体 指数富集配体系统进化 计算生物学 选择(遗传算法) 化学 寡核苷酸 计算机科学 生物 DNA 遗传学 人工智能 生物化学 核糖核酸 基因
作者
Obtin Alkhamis,Yi Xiao
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (1): 194-206 被引量:42
标识
DOI:10.1021/jacs.2c09522
摘要

Aptamers are oligonucleotide receptors with great potential for sensing and therapeutic applications. They are isolated from random libraries through an in vitro method termed systematic evolution of ligands by exponential enrichment (SELEX). Although SELEX-based methods have been widely employed over several decades, many aspects of the experimental process remain poorly understood in terms of how to adjust the selection conditions to obtain aptamers with the desired set of binding characteristics. As a result, SELEX is often performed with arbitrary parameters that tend to produce aptamers with insufficient affinity and/or specificity. Having a better understanding of these basic principles could increase the likelihood of obtaining high-quality aptamers. Here, we have systematically investigated how altering the selection stringency in terms of target concentration─which is essentially the root source of selection pressure for aptamer isolation─affects the outcome of SELEX. By performing four separate trials of SELEX for the same small-molecule target, we experimentally prove that the use of excessively high target concentrations promotes enrichment of low-affinity binders while also suppressing the enrichment of high-affinity aptamers. These findings should be broadly applicable across SELEX methods, given that they share the same core operating principle, and will be crucial for guiding selections to obtain high-quality aptamers in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Dlan发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
犹豫的行恶应助舒心飞珍采纳,获得10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
研友_enPJa8完成签到,获得积分10
4秒前
5秒前
npknpk发布了新的文献求助10
6秒前
万古发布了新的文献求助10
6秒前
he完成签到 ,获得积分20
6秒前
6秒前
8秒前
小恺发布了新的文献求助10
8秒前
小白完成签到,获得积分10
9秒前
粒粒发布了新的文献求助10
9秒前
科研通AI6应助马绵采纳,获得30
10秒前
10秒前
10秒前
MHB发布了新的文献求助10
11秒前
11秒前
qing发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Jsl完成签到,获得积分10
12秒前
sunsiyu完成签到,获得积分10
13秒前
13秒前
乐观秋荷发布了新的文献求助10
13秒前
20231125完成签到,获得积分10
14秒前
wzg666发布了新的文献求助10
15秒前
香飘飘发布了新的文献求助10
15秒前
小恺完成签到,获得积分10
15秒前
慕青应助npknpk采纳,获得10
15秒前
小小发布了新的文献求助30
15秒前
隐形曼青应助OU采纳,获得10
16秒前
斯文败类应助背后以丹采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666210
求助须知:如何正确求助?哪些是违规求助? 4879851
关于积分的说明 15116421
捐赠科研通 4825314
什么是DOI,文献DOI怎么找? 2583219
邀请新用户注册赠送积分活动 1537340
关于科研通互助平台的介绍 1495578