Braking Sensor and Actuator Fault Diagnosis With Combined Model-Based and Data-Driven Pressure Estimation Methods

执行机构 估计员 计算机科学 多层感知器 故障检测与隔离 稳健性(进化) 断层(地质) 控制理论(社会学) 车辆动力学 工程类 人工神经网络 控制工程 人工智能 汽车工程 数学 地震学 地质学 统计 基因 生物化学 化学 控制(管理)
作者
Yicai Liu,Zhentao Chen,Lingtao Wei,Xiangyu Wang,Liang Li
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (11): 11639-11648 被引量:14
标识
DOI:10.1109/tie.2022.3231287
摘要

The braking system is significant for intelligent vehicles, which influences vehicle safety directly. However, under harsh working conditions, the inevitable health degradation and even failure of the braking system may cause severe safety issues. This article proposes a novel braking actuator and sensor fault diagnosis scheme with combined model-based and data-driven pressure estimation methods. The model-based wheel cylinder pressure (WCP) estimator is established first based on the mathematical model of the hydraulic control unit (HCU) from the perspective of cause. The data-driven WCP estimator is then proposed based on the vehicle dynamics multivariate time series (MTS) model with the gated recurrent unit from the perspective of effect. However, acquiring a large dataset is a practical challenge for real vehicle tests, so a novel data augmentation method called shifting is presented to enhance the model generalization ability. Next, fault detection, isolation, and identification are realized by comparing the threshold and the cumulative sum (CUSUM) of the residuals generated by the combined WCP estimation methods. The validation results show that the proposed data-driven method outperforms the traditional multilayer perceptron (MLP), long short-term memory (LSTM), and transformer regarding accuracy and generalization. Vehicle tests simulating sensor and actuator faults validate the proposed fault diagnosis scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
认真平蝶完成签到 ,获得积分10
1秒前
90yied发布了新的文献求助10
2秒前
2秒前
斯文败类应助优雅惜雪采纳,获得10
2秒前
SSA80发布了新的文献求助10
3秒前
12发布了新的文献求助10
3秒前
着急的豁完成签到,获得积分10
3秒前
duou发布了新的文献求助10
4秒前
脑洞疼应助sunyawen采纳,获得10
4秒前
桐桐应助lingyan hu采纳,获得10
5秒前
5秒前
5秒前
SGOM完成签到,获得积分10
6秒前
6秒前
Han发布了新的文献求助10
7秒前
7秒前
科研通AI5应助xingstar采纳,获得10
8秒前
112233发布了新的文献求助10
11秒前
天真若魔发布了新的文献求助10
11秒前
顺利鸡完成签到,获得积分10
12秒前
12秒前
13秒前
爆米花应助卷心菜采纳,获得10
13秒前
14秒前
冷山发布了新的文献求助10
14秒前
12发布了新的文献求助10
14秒前
小徐发布了新的文献求助20
15秒前
sunyawen发布了新的文献求助10
16秒前
16秒前
Orange应助Han采纳,获得10
16秒前
科研通AI5应助90yied采纳,获得10
16秒前
16秒前
17秒前
尹不愁完成签到,获得积分10
17秒前
17秒前
英俊的铭应助哦哦采纳,获得10
17秒前
18秒前
18秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312