清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Two-Stage Mutual Fusion Network for Multispectral and Panchromatic Image Classification

全色胶片 计算机科学 多光谱图像 特征(语言学) 块(置换群论) 人工智能 频道(广播) 模式识别(心理学) 图像融合 特征提取 融合 上下文图像分类 计算机视觉 图像(数学) 数学 电信 语言学 哲学 几何学
作者
Yinuo Liao,Hao Zhu,Licheng Jiao,Xiaotong Li,Na Li,Kenan Sun,Xu Tang,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:1
标识
DOI:10.1109/tgrs.2022.3222458
摘要

With the rapid development of remote sensing technology, satellites can easily obtain multispectral (MS) and panchromatic (PAN) images. How to mine the essence and peculiarity of the MS and PAN images and utilize their complementary to improve classification performance is still a challenge. This paper designs a two-stage mutual fusion network (TSMF-Net) for MS and PAN image classification. The network can be divided into two stages: data fusion and feature fusion. In the data fusion stage, we propose an adaptive twin intensity-hue-saturation (ATIHS) strategy. It not only aligns the size and channels of the MS and PAN images by a novel q-Split operation, but also introduces an adaptive soft-average mask to reduce the differences between replacement components, effectively mitigating spectral distortion and paving the way for the next stage. In the feature fusion stage, we propose a feature graft block (FG-Block) in which we introduce triplet loss and design an interlaced channel addition (ICA) module. Under the supervision of triplet loss, the FG-Block separates and hauls each branch’s essential and peculiar features. With the help of the ICA module, it can effectively graft the essential feature between branches and retain the peculiar feature of each branch, improving the utilization and discrimination of features. Finally, composed of the ATIHS, FG-Blocks, and output layers, our TSMF-Net is proven to improve the accuracy of the remote sensing classification task. The experimental results on multiple datasets verify the effectiveness of our proposed algorithms. Our code is available at: https://github.com/liaoyinuo/TSMF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
John完成签到 ,获得积分10
16秒前
Gary完成签到 ,获得积分10
19秒前
蒲蒲完成签到 ,获得积分10
21秒前
34秒前
小婷君发布了新的文献求助30
39秒前
小巧的柏柳完成签到 ,获得积分10
44秒前
45秒前
雪山飞龙完成签到,获得积分10
46秒前
陈_Ccc完成签到 ,获得积分10
47秒前
Rayoo发布了新的文献求助10
50秒前
wanci应助幽默滑板采纳,获得10
54秒前
小婷君完成签到,获得积分10
55秒前
55秒前
58秒前
医学僧发布了新的文献求助10
1分钟前
老刘完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
迪鸣完成签到,获得积分0
1分钟前
2分钟前
路过完成签到 ,获得积分10
2分钟前
笨笨完成签到 ,获得积分10
2分钟前
chichenglin完成签到 ,获得积分10
2分钟前
racill完成签到 ,获得积分10
2分钟前
xiaosang0619完成签到,获得积分10
2分钟前
彩色的芷容完成签到 ,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
合适醉蝶完成签到 ,获得积分10
3分钟前
zhaoyu完成签到 ,获得积分10
3分钟前
LeoBigman完成签到 ,获得积分10
3分钟前
myq完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
DJ_Tokyo完成签到,获得积分10
3分钟前
平淡访冬完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839