A Two-Stage Mutual Fusion Network for Multispectral and Panchromatic Image Classification

全色胶片 计算机科学 多光谱图像 特征(语言学) 块(置换群论) 人工智能 频道(广播) 模式识别(心理学) 图像融合 特征提取 融合 上下文图像分类 计算机视觉 图像(数学) 数学 电信 语言学 哲学 几何学
作者
Yinuo Liao,Hao Zhu,Licheng Jiao,Xiaotong Li,Na Li,Kenan Sun,Xu Tang,Biao Hou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-18 被引量:1
标识
DOI:10.1109/tgrs.2022.3222458
摘要

With the rapid development of remote sensing technology, satellites can easily obtain multispectral (MS) and panchromatic (PAN) images. How to mine the essence and peculiarity of the MS and PAN images and utilize their complementary to improve classification performance is still a challenge. This paper designs a two-stage mutual fusion network (TSMF-Net) for MS and PAN image classification. The network can be divided into two stages: data fusion and feature fusion. In the data fusion stage, we propose an adaptive twin intensity-hue-saturation (ATIHS) strategy. It not only aligns the size and channels of the MS and PAN images by a novel q-Split operation, but also introduces an adaptive soft-average mask to reduce the differences between replacement components, effectively mitigating spectral distortion and paving the way for the next stage. In the feature fusion stage, we propose a feature graft block (FG-Block) in which we introduce triplet loss and design an interlaced channel addition (ICA) module. Under the supervision of triplet loss, the FG-Block separates and hauls each branch’s essential and peculiar features. With the help of the ICA module, it can effectively graft the essential feature between branches and retain the peculiar feature of each branch, improving the utilization and discrimination of features. Finally, composed of the ATIHS, FG-Blocks, and output layers, our TSMF-Net is proven to improve the accuracy of the remote sensing classification task. The experimental results on multiple datasets verify the effectiveness of our proposed algorithms. Our code is available at: https://github.com/liaoyinuo/TSMF-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健应助三石采纳,获得10
刚刚
刚刚
不朽阳神完成签到,获得积分10
刚刚
帅气的Bond发布了新的文献求助10
1秒前
AAA爱老虎油完成签到,获得积分10
1秒前
传奇3应助缥缈南露采纳,获得10
1秒前
小胡同学完成签到,获得积分10
2秒前
自强不息完成签到,获得积分10
2秒前
3秒前
明明完成签到,获得积分20
4秒前
oleskarabach发布了新的文献求助10
4秒前
园宝完成签到,获得积分10
4秒前
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
jucy完成签到,获得积分10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
wanci应助科研通管家采纳,获得10
5秒前
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得30
5秒前
6秒前
李健应助科研通管家采纳,获得10
6秒前
慕洋发布了新的文献求助10
6秒前
李健应助qiong采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
WANGYUANLE应助科研通管家采纳,获得30
6秒前
彭于晏应助科研通管家采纳,获得30
6秒前
烟花应助Yang采纳,获得10
6秒前
雪花火应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3230133
求助须知:如何正确求助?哪些是违规求助? 2877796
关于积分的说明 8201607
捐赠科研通 2545066
什么是DOI,文献DOI怎么找? 1374828
科研通“疑难数据库(出版商)”最低求助积分说明 647143
邀请新用户注册赠送积分活动 621973