Piezoelectric Actuation Mechanism Involving Extrinsic Nanodomain Dynamics in Lead‐Free Piezoelectrics

压电 材料科学 铁电性 化学物理 压电响应力显微镜 分子动力学 纳米技术 离子 凝聚态物理 电场 同步加速器 晶体结构 电介质 结晶学 光电子学 物理 复合材料 化学 光学 计算化学 量子力学
作者
Sangwook Kim,Ryuki Miyauchi,Yukio Sato,Hyunwook Nam,Ichiro Fujii,Shintaro Ueno,Yoshihiro Kuroiwa,Satoshi Wada
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (11) 被引量:19
标识
DOI:10.1002/adma.202208717
摘要

Piezoelectric materials play a key role in applications, while there are physically open questions. The physical origin of piezoelectricity is understood as the sum of contributions from intrinsic effects on lattice dynamics and those from extrinsic effects on ferroic-domain dynamics, but there is an incomplete understanding that all but intrinsic effects are classified as extrinsic effects. Therefore, the accurate classification of extrinsic effects is important for understanding the physical origin of piezoelectricity. In this work, high-energy synchrotron radiation X-ray diffraction is utilized to measure the response of BiFeO3 -BaTiO3 piezoelectrics and the intrinsic/extrinsic contribution to electric fields. It is found from crystal structure and intrinsic/extrinsic contribution, using the analysis involving structure refinement with various structural model and micromechanics-based calculations, that Bi3+ -ion disordering is important for realization of piezoelectricity and nanodomains. Here, an extrinsic effect on the rearrangement of nanodomains is suggested. The nanodomains, which are formed by the locally distorted structure around the A-site by Bi-ion disordering, can significantly deform the material in the BiFeO3 -BaTiO3 system, which contributes to the piezoelectric actuation mechanism apart from the extrinsic effect on ferroic-domain dynamics. Bi-ion disordering plays an important role in realizing piezoelectricity and nanodomains and can provide essential material design clues to develop next-generation Bi-based lead-free piezoelectric ceramics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
LYY发布了新的文献求助10
1秒前
wangfu完成签到,获得积分10
1秒前
ding应助Dddd采纳,获得10
2秒前
yin发布了新的文献求助10
2秒前
大模型应助张张采纳,获得10
2秒前
Akim应助吾问无为谓采纳,获得10
3秒前
3秒前
神勇的冰姬完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
6秒前
tony完成签到,获得积分10
6秒前
Uynaux发布了新的文献求助30
6秒前
SONG完成签到,获得积分10
6秒前
SYLH应助干秋白采纳,获得10
7秒前
7秒前
风雨1210发布了新的文献求助10
8秒前
文艺书雪完成签到 ,获得积分10
8秒前
独行侠完成签到,获得积分10
8秒前
9秒前
我测你码发布了新的文献求助10
9秒前
又要起名字完成签到,获得积分10
9秒前
9秒前
9秒前
damian完成签到,获得积分10
10秒前
LiShin发布了新的文献求助10
10秒前
渝州人应助凤凰山采纳,获得10
11秒前
sweetbearm应助凤凰山采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
yizhiGao应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得30
11秒前
顾矜应助随机起的名采纳,获得10
11秒前
NN应助科研通管家采纳,获得10
11秒前
pinging应助科研通管家采纳,获得10
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794