Radar Compound Jamming Cognition Based on a Deep Object Detection Network

干扰 稳健性(进化) 计算机科学 人工智能 雷达 目标检测 电子对抗 模式识别(心理学) 机器学习 算法 生物化学 电信 热力学 基因 物理 化学
作者
Jiaxiang Zhang,Zhennan Liang,Chao Zhou,Quanhua Liu,Teng Long
出处
期刊:IEEE Transactions on Aerospace and Electronic Systems [Institute of Electrical and Electronics Engineers]
卷期号:59 (3): 3251-3263 被引量:12
标识
DOI:10.1109/taes.2022.3224695
摘要

This article proposes a deep-learning-based compound jamming cognition method to recognize, detect individual jamming elements, and estimate key parameters of them. The method first uses a time–frequency distribution (TFD) to characterize jamming in multiple dimensions (time, frequency, and energy) and then applies an object detection network to identify and locate jamming in the time–frequency domain. This article summarizes the types of jamming parameters and gives corresponding methods for estimating parameters. Unlike traditional studies, this article models jamming recognition as an object detection problem and applies a deep learning framework to find solutions. Therefore, the proposed method has better stability and robustness than conventional techniques, which solves the problem of feature selection caused by the lack of mapping relationship between jamming and features. Another advantage over conventional methods is the multijamming detection capability of this algorithm, which provides more information about individual elements of compound jamming. In terms of jamming parameter estimation, the proposed method makes full use of the geometric characteristics of TFDs, so it is more versatile than conventional methods based on analytical analysis. Simulations and experimental data are used to verify the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助啊哦采纳,获得10
刚刚
刚刚
甜茶发布了新的文献求助10
1秒前
1秒前
1秒前
123呵呵完成签到,获得积分10
2秒前
坚强的严青完成签到,获得积分20
2秒前
万能图书馆应助PaddyChen采纳,获得30
2秒前
2秒前
3秒前
3秒前
网GHD发布了新的文献求助10
4秒前
烟花应助风中巧凡采纳,获得10
4秒前
Jasper应助半截神经病采纳,获得10
4秒前
李狗蛋完成签到,获得积分10
5秒前
5秒前
高兴沛凝完成签到,获得积分10
5秒前
5秒前
ttelsa完成签到,获得积分10
6秒前
6秒前
Hao发布了新的文献求助10
7秒前
7秒前
柒玖完成签到,获得积分10
7秒前
8秒前
9秒前
有志青年完成签到,获得积分10
9秒前
9秒前
fancy发布了新的文献求助10
9秒前
LijinJiang完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
星辰大海应助傅剑寒采纳,获得10
11秒前
嘻嘻嘻发布了新的文献求助10
12秒前
叉叉茶发布了新的文献求助10
12秒前
12秒前
要减肥飞机完成签到,获得积分10
12秒前
pluto应助irisjlj采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635