Reciprocal assistance of intravascular imaging in three-dimensional stent reconstruction: Using cross-modal translation based on disentanglement representation

血管内超声 光学相干层析成像 支架 人工智能 医学 放射科 计算机科学
作者
Peng Wu,Yuchuan Qiao,Miao Chu,Su Zhang,Jingfeng Bai,Juan Luis Gutiérrez‐Chico,Shengxian Tu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:104: 102166-102166 被引量:2
标识
DOI:10.1016/j.compmedimag.2022.102166
摘要

Accurate and efficient 3-dimension (3D) reconstruction of coronary stents in intravascular imaging of optical coherence tomography (OCT) or intravascular ultrasound (IVUS) is important for optimization of complex percutaneous coronary interventions (PCI). Deep learning has been used to address this technical challenge. However, manual annotation of stent is strenuous, especially for IVUS images. To this end, we aim to explore whether the OCT and IVUS images can assist each other in stent 3D reconstruction when one of them is lack of labeled dataset.We firstly performed cross-modal translation between OCT and IVUS images, where disentangled representation was employed to generate synthetic images with good stent consistency. The reciprocal assistance of OCT and IVUS in stent 3D reconstruction was then conducted by applying unsupervised and semi-supervised learning with the aid of synthetic images. Stent consistency in synthetic images and reciprocal effectiveness in stent 3D reconstruction were quantitatively assessed by F1-Score (FS) on two datasets: OCT-High Definition IVUS (HD IVUS) and OCT-Conventional IVUS (IVUS).The employment of disentangled representation achieved higher stent consistency in synthetic images (OCT to HD IVUS: FS=0.789 vs 0.684; HD IVUS to OCT: FS=0.766 vs 0.682; OCT to IVUS: FS=0.806 vs 0.664; IVUS to OCT: FS=0.724 vs 0.673). For stent 3D reconstruction, the assistance from synthetic images significantly promoted unsupervised adaptation across modalities (OCT to HD IVUS: FS=0.776 vs 0.109; HD IVUS to OCT: FS=0.826 vs 0.125; OCT to IVUS: FS=0.782 vs 0.068; IVUS to OCT: FS=0.815 vs 0.123), and improved performance in semi-supervised learning, especially when only limited labeled data was available.The intravascular images of OCT and IVUS can provide reciprocal assistance to each other in stent 3D reconstruction by cross-modal translation, where the stent consistency in synthetic images was maintained by disentangled representation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诗轩发布了新的文献求助10
刚刚
善学以致用应助wanan采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
华仔应助能干的月光采纳,获得10
2秒前
2秒前
orixero应助daydayup采纳,获得10
2秒前
舒心傲蕾发布了新的文献求助10
3秒前
研友_EZ1oWL发布了新的文献求助10
4秒前
善学以致用应助竹沐鱼采纳,获得10
4秒前
4秒前
4秒前
6秒前
可爱的函函应助amzons9采纳,获得30
6秒前
zwj发布了新的文献求助10
6秒前
6秒前
白菜发布了新的文献求助200
6秒前
bc应助秋白华落霜采纳,获得30
6秒前
7秒前
asADA发布了新的文献求助10
8秒前
科研通AI2S应助糖糖采纳,获得10
8秒前
8秒前
赖雅绿完成签到,获得积分0
9秒前
long发布了新的文献求助10
9秒前
闲窳发布了新的文献求助20
10秒前
所所应助健忘天与采纳,获得10
10秒前
10秒前
11秒前
11秒前
wsqg123发布了新的文献求助10
12秒前
12秒前
12秒前
土豪的康发布了新的文献求助10
12秒前
二依发布了新的文献求助10
13秒前
sdfwsdfsd发布了新的文献求助50
13秒前
13秒前
14秒前
Azure发布了新的文献求助10
15秒前
勤奋橘子发布了新的文献求助10
15秒前
ikea1984发布了新的文献求助10
16秒前
ww完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610029
求助须知:如何正确求助?哪些是违规求助? 4694550
关于积分的说明 14882989
捐赠科研通 4720934
什么是DOI,文献DOI怎么找? 2544990
邀请新用户注册赠送积分活动 1509848
关于科研通互助平台的介绍 1473013