Reciprocal assistance of intravascular imaging in three-dimensional stent reconstruction: Using cross-modal translation based on disentanglement representation

血管内超声 光学相干层析成像 支架 人工智能 医学 放射科 计算机科学
作者
Peng Wu,Yuchuan Qiao,Miao Chu,Su Zhang,Jingfeng Bai,Juan Luis Gutiérrez‐Chico,Shengxian Tu
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:104: 102166-102166 被引量:2
标识
DOI:10.1016/j.compmedimag.2022.102166
摘要

Accurate and efficient 3-dimension (3D) reconstruction of coronary stents in intravascular imaging of optical coherence tomography (OCT) or intravascular ultrasound (IVUS) is important for optimization of complex percutaneous coronary interventions (PCI). Deep learning has been used to address this technical challenge. However, manual annotation of stent is strenuous, especially for IVUS images. To this end, we aim to explore whether the OCT and IVUS images can assist each other in stent 3D reconstruction when one of them is lack of labeled dataset.We firstly performed cross-modal translation between OCT and IVUS images, where disentangled representation was employed to generate synthetic images with good stent consistency. The reciprocal assistance of OCT and IVUS in stent 3D reconstruction was then conducted by applying unsupervised and semi-supervised learning with the aid of synthetic images. Stent consistency in synthetic images and reciprocal effectiveness in stent 3D reconstruction were quantitatively assessed by F1-Score (FS) on two datasets: OCT-High Definition IVUS (HD IVUS) and OCT-Conventional IVUS (IVUS).The employment of disentangled representation achieved higher stent consistency in synthetic images (OCT to HD IVUS: FS=0.789 vs 0.684; HD IVUS to OCT: FS=0.766 vs 0.682; OCT to IVUS: FS=0.806 vs 0.664; IVUS to OCT: FS=0.724 vs 0.673). For stent 3D reconstruction, the assistance from synthetic images significantly promoted unsupervised adaptation across modalities (OCT to HD IVUS: FS=0.776 vs 0.109; HD IVUS to OCT: FS=0.826 vs 0.125; OCT to IVUS: FS=0.782 vs 0.068; IVUS to OCT: FS=0.815 vs 0.123), and improved performance in semi-supervised learning, especially when only limited labeled data was available.The intravascular images of OCT and IVUS can provide reciprocal assistance to each other in stent 3D reconstruction by cross-modal translation, where the stent consistency in synthetic images was maintained by disentangled representation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harlind发布了新的文献求助30
1秒前
serena0_0发布了新的文献求助10
1秒前
Puffkten完成签到 ,获得积分10
4秒前
微笑的凌旋完成签到 ,获得积分10
4秒前
脑洞疼应助许绍洋采纳,获得10
5秒前
whh完成签到,获得积分20
5秒前
6秒前
雷小牛完成签到 ,获得积分10
7秒前
7秒前
闻屿完成签到,获得积分10
10秒前
耶啵耶啵完成签到 ,获得积分10
11秒前
jovrtic发布了新的文献求助10
11秒前
一团毛线完成签到,获得积分10
13秒前
wangxuan完成签到,获得积分10
15秒前
mocheer完成签到,获得积分10
15秒前
16秒前
16秒前
精神世界完成签到,获得积分10
17秒前
青炀完成签到,获得积分10
18秒前
ruqinmq完成签到,获得积分10
19秒前
drsherlock发布了新的文献求助10
20秒前
Cynn完成签到 ,获得积分10
22秒前
务实的胡萝卜完成签到 ,获得积分10
23秒前
24秒前
飘逸善若完成签到,获得积分10
25秒前
Usin完成签到,获得积分10
29秒前
现代千易完成签到,获得积分10
31秒前
依依完成签到,获得积分10
31秒前
XY完成签到,获得积分10
33秒前
生活不是电影完成签到,获得积分10
34秒前
lebron完成签到,获得积分10
34秒前
勤劳的丹妮完成签到,获得积分10
35秒前
35秒前
zyc完成签到 ,获得积分10
35秒前
123123完成签到 ,获得积分10
37秒前
John完成签到,获得积分10
37秒前
典雅的访风完成签到,获得积分10
38秒前
ccc应助科研通管家采纳,获得10
39秒前
39秒前
英姑应助科研通管家采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603567
求助须知:如何正确求助?哪些是违规求助? 4688515
关于积分的说明 14854346
捐赠科研通 4693603
什么是DOI,文献DOI怎么找? 2540859
邀请新用户注册赠送积分活动 1507072
关于科研通互助平台的介绍 1471806