Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems

计算机科学 元启发式 数学优化 全局优化 局部搜索(优化) 进化算法 人工智能 算法 数学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohammed Jameel,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:262: 110248-110248 被引量:374
标识
DOI:10.1016/j.knosys.2022.110248
摘要

This work presents a novel nature-inspired metaheuristic called Nutcracker Optimization Algorithm (NOA) inspired by Clark's nutcrackers. The nutcrackers exhibit two distinct behaviors that occur at separate periods. The first behavior, which occurs during the summer and fall seasons, represents the nutcracker's search for seeds and subsequent storage in an appropriate cache. During the winter and spring seasons, another behavior based on the spatial memory strategy is regarded to search for the hidden caches marked at different angles using various objects or markers as reference points. If the nutcrackers cannot find the stored seeds, they will randomly explore the search space to find their food. NOA is herein proposed to mimic these various behaviors to present a new, robust metaheuristic algorithm with different local and global search operators, allowing it to solve various optimization problems with better outcomes. NOA is evaluated on twenty-three standard test functions, test suites of CEC-2014, CEC-2017, and CEC-2020 and five real-world engineering design problems. NOA is compared with three classes of existing optimization algorithms: (1) SMA, GBO, EO, RUN, AVOA, RFO, and GTO as recently-published algorithms, (2) SSA, WOA, and GWO as highly-cited algorithms, and (3) AL-SHADE, L-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA as highly-performing optimizers and winners of CEC competition. NOA was ranked first among all methods and demonstrated superior results when compared to LSHADE-cnEpSin and LSHADE-SPACMA as the best-performing optimizers and the winners of CEC-2017, and AL-SHADE and L-SHADE as the winners of CEC-2014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lql发布了新的文献求助10
刚刚
1秒前
1秒前
李晨语发布了新的文献求助10
2秒前
Steven完成签到,获得积分10
2秒前
2秒前
sh完成签到,获得积分20
2秒前
胡楠发布了新的文献求助10
2秒前
勤奋尔丝完成签到 ,获得积分10
2秒前
3秒前
田様应助sinlar采纳,获得30
3秒前
呋喃发布了新的文献求助10
3秒前
3秒前
3秒前
miyamoto完成签到,获得积分20
3秒前
rrrr发布了新的文献求助10
4秒前
zhenglingying完成签到,获得积分10
4秒前
XX完成签到,获得积分10
4秒前
巅峰小学生完成签到,获得积分20
5秒前
超级翠应助wuran采纳,获得10
5秒前
扶桑发布了新的文献求助10
7秒前
领导范儿应助myyang采纳,获得10
7秒前
Owen应助单薄怡采纳,获得30
7秒前
舸宇发布了新的文献求助10
7秒前
孔雀翎发布了新的文献求助10
8秒前
俊逸的代曼完成签到,获得积分10
8秒前
精明柜子应助美好的觅云采纳,获得100
9秒前
蔡徐坤发布了新的文献求助30
9秒前
9秒前
9秒前
欢喜的丹寒完成签到,获得积分20
9秒前
10秒前
Biohacking完成签到,获得积分10
10秒前
shim完成签到,获得积分10
10秒前
10秒前
10秒前
LL完成签到,获得积分10
10秒前
水本无忧87完成签到,获得积分10
11秒前
11秒前
科研通AI6应助myyang采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629915
求助须知:如何正确求助?哪些是违规求助? 4721053
关于积分的说明 14971551
捐赠科研通 4787872
什么是DOI,文献DOI怎么找? 2556612
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478302