Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems

计算机科学 元启发式 数学优化 全局优化 局部搜索(优化) 进化算法 人工智能 算法 数学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohammed Jameel,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:262: 110248-110248 被引量:245
标识
DOI:10.1016/j.knosys.2022.110248
摘要

This work presents a novel nature-inspired metaheuristic called Nutcracker Optimization Algorithm (NOA) inspired by Clark's nutcrackers. The nutcrackers exhibit two distinct behaviors that occur at separate periods. The first behavior, which occurs during the summer and fall seasons, represents the nutcracker's search for seeds and subsequent storage in an appropriate cache. During the winter and spring seasons, another behavior based on the spatial memory strategy is regarded to search for the hidden caches marked at different angles using various objects or markers as reference points. If the nutcrackers cannot find the stored seeds, they will randomly explore the search space to find their food. NOA is herein proposed to mimic these various behaviors to present a new, robust metaheuristic algorithm with different local and global search operators, allowing it to solve various optimization problems with better outcomes. NOA is evaluated on twenty-three standard test functions, test suites of CEC-2014, CEC-2017, and CEC-2020 and five real-world engineering design problems. NOA is compared with three classes of existing optimization algorithms: (1) SMA, GBO, EO, RUN, AVOA, RFO, and GTO as recently-published algorithms, (2) SSA, WOA, and GWO as highly-cited algorithms, and (3) AL-SHADE, L-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA as highly-performing optimizers and winners of CEC competition. NOA was ranked first among all methods and demonstrated superior results when compared to LSHADE-cnEpSin and LSHADE-SPACMA as the best-performing optimizers and the winners of CEC-2017, and AL-SHADE and L-SHADE as the winners of CEC-2014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liooo完成签到 ,获得积分10
刚刚
CZN发布了新的文献求助10
刚刚
1秒前
打打应助无聊的南松采纳,获得10
1秒前
jenningseastera应助阿胡采纳,获得30
2秒前
2秒前
1433223完成签到,获得积分10
2秒前
温柔的尔丝完成签到,获得积分10
2秒前
哈哈哈我要查文献完成签到 ,获得积分10
3秒前
勤勤的新星完成签到,获得积分10
4秒前
Dky_安静的初夏应助青青草采纳,获得10
4秒前
大大的西瓜完成签到 ,获得积分10
4秒前
杉杉来吃完成签到,获得积分10
4秒前
5秒前
smartlailai完成签到,获得积分10
5秒前
Lucas应助稳重绿旋采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
ccccccp完成签到,获得积分10
7秒前
格桑发布了新的文献求助10
7秒前
林登万完成签到,获得积分10
8秒前
Inory007发布了新的文献求助10
8秒前
Xlx完成签到,获得积分10
8秒前
上官若男应助松松松采纳,获得10
9秒前
Lance先生完成签到,获得积分10
9秒前
10秒前
11秒前
Elytra完成签到,获得积分10
11秒前
无聊的南松完成签到,获得积分10
12秒前
Ann完成签到,获得积分10
12秒前
哎呀嘛君莫笑完成签到,获得积分10
12秒前
万能图书馆应助杨雪妮采纳,获得10
13秒前
Orange应助zhengzhao采纳,获得10
13秒前
小钱全完成签到,获得积分10
13秒前
13秒前
13秒前
重要的一凡完成签到,获得积分10
14秒前
一颗星星完成签到,获得积分10
14秒前
赵磊发布了新的文献求助30
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942