亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Nutcracker optimizer: A novel nature-inspired metaheuristic algorithm for global optimization and engineering design problems

计算机科学 元启发式 数学优化 全局优化 局部搜索(优化) 进化算法 人工智能 算法 数学
作者
Mohamed Abdel‐Basset,Reda Mohamed,Mohammed Jameel,Mohamed Abouhawwash
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:262: 110248-110248 被引量:245
标识
DOI:10.1016/j.knosys.2022.110248
摘要

This work presents a novel nature-inspired metaheuristic called Nutcracker Optimization Algorithm (NOA) inspired by Clark's nutcrackers. The nutcrackers exhibit two distinct behaviors that occur at separate periods. The first behavior, which occurs during the summer and fall seasons, represents the nutcracker's search for seeds and subsequent storage in an appropriate cache. During the winter and spring seasons, another behavior based on the spatial memory strategy is regarded to search for the hidden caches marked at different angles using various objects or markers as reference points. If the nutcrackers cannot find the stored seeds, they will randomly explore the search space to find their food. NOA is herein proposed to mimic these various behaviors to present a new, robust metaheuristic algorithm with different local and global search operators, allowing it to solve various optimization problems with better outcomes. NOA is evaluated on twenty-three standard test functions, test suites of CEC-2014, CEC-2017, and CEC-2020 and five real-world engineering design problems. NOA is compared with three classes of existing optimization algorithms: (1) SMA, GBO, EO, RUN, AVOA, RFO, and GTO as recently-published algorithms, (2) SSA, WOA, and GWO as highly-cited algorithms, and (3) AL-SHADE, L-SHADE, LSHADE-cnEpSin, and LSHADE-SPACMA as highly-performing optimizers and winners of CEC competition. NOA was ranked first among all methods and demonstrated superior results when compared to LSHADE-cnEpSin and LSHADE-SPACMA as the best-performing optimizers and the winners of CEC-2017, and AL-SHADE and L-SHADE as the winners of CEC-2014.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hu完成签到,获得积分20
2秒前
李金文应助爱学习的曼卉采纳,获得10
8秒前
12秒前
xiao发布了新的文献求助10
17秒前
pp完成签到,获得积分10
19秒前
mochalv123完成签到 ,获得积分10
24秒前
ying818k完成签到 ,获得积分10
31秒前
blenx完成签到,获得积分10
32秒前
brwen完成签到,获得积分10
46秒前
51秒前
zyl发布了新的文献求助10
55秒前
yb完成签到,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
小邸应助科研通管家采纳,获得10
1分钟前
小邸应助科研通管家采纳,获得10
1分钟前
zzz发布了新的文献求助10
1分钟前
weibo完成签到,获得积分10
1分钟前
ckyyds完成签到 ,获得积分10
1分钟前
Matberry完成签到 ,获得积分10
1分钟前
朴素羊完成签到 ,获得积分10
1分钟前
呆萌冰彤完成签到 ,获得积分10
1分钟前
所所应助汤人雄采纳,获得10
1分钟前
lyz完成签到,获得积分10
2分钟前
lyu完成签到,获得积分10
2分钟前
科目三应助白芷当归采纳,获得10
2分钟前
科研通AI6应助聪慧夜云采纳,获得30
2分钟前
芜衡落砂完成签到,获得积分10
2分钟前
Orange应助JJJJ采纳,获得10
2分钟前
2分钟前
2分钟前
白芷当归发布了新的文献求助10
2分钟前
JJJJ发布了新的文献求助10
2分钟前
桐桐应助聪慧雪糕采纳,获得10
2分钟前
白芷当归完成签到,获得积分20
2分钟前
2分钟前
3分钟前
默默雪旋完成签到 ,获得积分10
3分钟前
聪慧雪糕发布了新的文献求助10
3分钟前
科研小白发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4581559
求助须知:如何正确求助?哪些是违规求助? 3999491
关于积分的说明 12381352
捐赠科研通 3674182
什么是DOI,文献DOI怎么找? 2024857
邀请新用户注册赠送积分活动 1058733
科研通“疑难数据库(出版商)”最低求助积分说明 945497