A Closer Look at the Joint Training of Object Detection and Re-Identification in Multi-Object Tracking

判别式 计算机科学 目标检测 人工智能 对象(语法) 推论 假阳性悖论 光学(聚焦) 鉴定(生物学) 机器学习 任务(项目管理) 视频跟踪 特征(语言学) 基本事实 模式识别(心理学) 计算机视觉 工程类 植物 生物 系统工程 哲学 语言学 物理 光学
作者
Tianyi Liang,Baopu Li,Mengzhu Wang,Huibin Tan,Zhigang Luo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 267-280 被引量:13
标识
DOI:10.1109/tip.2022.3227814
摘要

Unifying object detection and re-identification (ReID) into a single network enables faster multi-object tracking (MOT), while this multi-task setting poses challenges for training. In this work, we dissect the joint training of detection and ReID from two dimensions: label assignment and loss function. We find previous works generally overlook them and directly borrow the practices from object detection, inevitably causing inferior performance. Specifically, we identify a qualified label assignment for MOT should: 1) have the assignment cost aware of ReID cost, not just detection cost; 2) provide sufficient positive samples for robust feature learning while avoiding ambiguous positives (i.e., the positives shared by different ground-truth objects). To achieve the above goals, we first propose Identity-aware Label Assignment, which jointly considers the assignment cost of detection and ReID to select positive samples for each instance without ambiguities. Moreover, we advance a novel Discriminative Focal Loss that integrates ReID predictions with Focal Loss to focus the training on the discriminative samples. Finally, we upgrade the strong baseline FairMOT with our techniques and achieve up to 7.0 MOTA / 54.1% IDs improvements on MOT16/17/20 benchmarks under favorable inference speed, which verifies our tailored label assignment and loss function for MOT are superior to those inherited from object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙ym发布了新的文献求助10
2秒前
2秒前
lvvyy126发布了新的文献求助10
2秒前
ninomae完成签到 ,获得积分10
3秒前
3秒前
bofu发布了新的文献求助10
5秒前
5秒前
小二郎应助彭佳丽采纳,获得10
7秒前
xinggui发布了新的文献求助10
7秒前
阿义完成签到,获得积分10
7秒前
hony发布了新的文献求助10
7秒前
缥缈发布了新的文献求助10
8秒前
Liuliu发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
www完成签到,获得积分10
11秒前
12秒前
Yeri完成签到 ,获得积分10
14秒前
宜醉宜游宜睡应助小可采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
雨er发布了新的文献求助10
16秒前
yayaya完成签到,获得积分20
18秒前
19秒前
南巷完成签到 ,获得积分10
19秒前
胖豆儿发布了新的文献求助10
20秒前
彭佳丽发布了新的文献求助10
21秒前
cc发布了新的文献求助10
21秒前
21秒前
22秒前
拓小八发布了新的文献求助30
22秒前
bofu发布了新的文献求助10
24秒前
RACHEL完成签到,获得积分10
24秒前
852应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得30
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309669
求助须知:如何正确求助?哪些是违规求助? 2942933
关于积分的说明 8511870
捐赠科研通 2618027
什么是DOI,文献DOI怎么找? 1430770
科研通“疑难数据库(出版商)”最低求助积分说明 664273
邀请新用户注册赠送积分活动 649451