A Closer Look at the Joint Training of Object Detection and Re-Identification in Multi-Object Tracking

判别式 计算机科学 目标检测 人工智能 对象(语法) 推论 假阳性悖论 光学(聚焦) 鉴定(生物学) 机器学习 任务(项目管理) 视频跟踪 特征(语言学) 基本事实 模式识别(心理学) 计算机视觉 工程类 植物 生物 系统工程 哲学 语言学 物理 光学
作者
Tianyi Liang,Baopu Li,Mengzhu Wang,Huibin Tan,Zhigang Luo
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 267-280 被引量:13
标识
DOI:10.1109/tip.2022.3227814
摘要

Unifying object detection and re-identification (ReID) into a single network enables faster multi-object tracking (MOT), while this multi-task setting poses challenges for training. In this work, we dissect the joint training of detection and ReID from two dimensions: label assignment and loss function. We find previous works generally overlook them and directly borrow the practices from object detection, inevitably causing inferior performance. Specifically, we identify a qualified label assignment for MOT should: 1) have the assignment cost aware of ReID cost, not just detection cost; 2) provide sufficient positive samples for robust feature learning while avoiding ambiguous positives (i.e., the positives shared by different ground-truth objects). To achieve the above goals, we first propose Identity-aware Label Assignment, which jointly considers the assignment cost of detection and ReID to select positive samples for each instance without ambiguities. Moreover, we advance a novel Discriminative Focal Loss that integrates ReID predictions with Focal Loss to focus the training on the discriminative samples. Finally, we upgrade the strong baseline FairMOT with our techniques and achieve up to 7.0 MOTA / 54.1% IDs improvements on MOT16/17/20 benchmarks under favorable inference speed, which verifies our tailored label assignment and loss function for MOT are superior to those inherited from object detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助俊秀的冬灵采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
亢kxh完成签到,获得积分10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
e云墨色应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
深情安青应助沉静的白猫采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
e云墨色应助科研通管家采纳,获得10
3秒前
周哲发布了新的文献求助10
3秒前
3秒前
科研通AI6应助科研通管家采纳,获得15
3秒前
彭于晏应助科研通管家采纳,获得30
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937