Development of a prediction model for gross residual in high-grade serous ovarian cancer by combining preoperative assessments of abdominal and pelvic metastases and multiparametric MRI

医学 列线图 放射科 逻辑回归 有效扩散系数 核医学 磁共振成像 肿瘤科 内科学
作者
Jingjing Lu,Songqi Cai,Fang Wang,Pu‐Yeh Wu,Xianpan Pan,Jin Wei Qiang,Haiming Li,Mengsu Zeng
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (9): 1823-1831 被引量:3
标识
DOI:10.1016/j.acra.2022.12.019
摘要

To preoperatively predict residual tumor (RT) in patients with high-grade serous ovarian carcinoma (HGSOC) via a radiomic-clinical nomogram.A total of 128 patients with advanced HGSOC were enrolled (training cohort: n=106; validation cohort: n=22). Serum cancer antigen-125 (CA125), serum human epididymis protein 4 (HE-4) level, and neutrophil-to-lymphocyte ratio (NLR) were obtained from the medical records. Metastases in abdomen and pelvis (MAP) of HGSOC patients was evaluated and scored based on preoperative abdominal and pelvic enhanced CT, MRI and/or PET-CT. A volume of interest (VOI) of each tumor was manually contoured along the boundary slice-by-slice. Radiomic features were extracted from the T2-weighted imaging (T2WI), diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) images. Univariate and multivariate analyses were used to determine the independent predictors of RT status. Least absolute shrinkage and selection operator (LASSO) logistic regression was performed to select optimal features and construct radiomic models. A radiomic-clinical nomogram incorporating radiomic signature and clinical parameters was developed and evaluated in training and validation cohorts.MAP score (p = 0.002), HE-4 level (p = 0.001) and NLR (p = 0.008) were independent predictors of RT status. The final radiomic-clinical nomogram showed satisfactory prediction performance in training (AUC = 0.936), cross validation (AUC = 0.906) and separate validation cohorts (AUC = 0.900), and fitted well in calibration curves (p > 0.05). Decision curve further confirmed the clinical application value of the nomogram.The proposed MRI-based radiomic-clinical nomogram achieved excellent preoperative prediction of the RT status in HGSOC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助汐风舞雪采纳,获得10
1秒前
1秒前
乖乖发布了新的文献求助10
1秒前
追寻听寒完成签到,获得积分10
2秒前
炼金术士完成签到,获得积分10
2秒前
coolkid完成签到 ,获得积分10
3秒前
CipherSage应助花花采纳,获得10
4秒前
江哥完成签到,获得积分10
4秒前
华仔应助milkymayi采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
7秒前
genomed应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得30
7秒前
Ava应助科研通管家采纳,获得10
7秒前
桐桐应助Lizhenxiang采纳,获得10
7秒前
magnolia5335完成签到,获得积分10
10秒前
15秒前
Stove完成签到,获得积分10
15秒前
Hello应助小智采纳,获得10
15秒前
15秒前
17秒前
陈陈完成签到,获得积分10
17秒前
18秒前
18秒前
方圆发布了新的文献求助30
19秒前
ijude1900发布了新的文献求助10
21秒前
21秒前
忆安完成签到 ,获得积分10
22秒前
thth发布了新的文献求助10
23秒前
小智完成签到,获得积分10
25秒前
25秒前
科研通AI2S应助duoduo7采纳,获得10
26秒前
27秒前
111发布了新的文献求助10
27秒前
楚阔完成签到,获得积分10
28秒前
花花发布了新的文献求助10
28秒前
Akim应助thth采纳,获得30
32秒前
Candice应助绵马紫萁采纳,获得10
33秒前
34秒前
37秒前
39秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 3323847
求助须知:如何正确求助?哪些是违规求助? 2954677
关于积分的说明 8572737
捐赠科研通 2632361
什么是DOI,文献DOI怎么找? 1440668
科研通“疑难数据库(出版商)”最低求助积分说明 667537
邀请新用户注册赠送积分活动 654163