New memory-based hybrid model for middle-term water demand forecasting in irrigated areas

期限(时间) 环境科学 气象学 水资源管理 水文学(农业) 地理 地质学 岩土工程 物理 量子力学
作者
R. González Perea,Ileana Fernández García,Emilio Camacho Poyato,Juan Antonio Rodríguez Díaz
出处
期刊:Agricultural Water Management [Elsevier BV]
卷期号:284: 108367-108367 被引量:9
标识
DOI:10.1016/j.agwat.2023.108367
摘要

The energy demand and their associated costs in pressurized irrigation networks together with water scarcity are currently causing serious challenges for irrigation district's (ID) managers. Additionally, most of the new water distribution networks in IDs have been designed to be operated on-demand complexing ID managers the daily decision-making process. The knowledge of the water demand several days in advance would facilitate the management of the system and would help to optimize the water use and energy costs. For an efficient management and optimization of the water-energy nexus in IDs, longer term forecasting models are needed. In this work, a new hybrid model (called LSTMHybrid) combining Fuzzy Logic (FL), Genetic Algorithm (GA), LSTM encoder-decoder and dense or full connected neural networks (DNN) for the one-week forecasting of irrigation water demand at ID scale has been developed. LSTMHybrid was developed in Python and applied to a real ID. The optimal input variables for LSTMHydrid were mean temperature (°C), reference evapotranspiration (mm), solar radiation (MJ m−2) and irrigation water demand of the ID (m3) from 1 to 7 days prior to the first day of prediction. The optimal LSTMHybrid model selected consisted of 50 LSTM cells in the encoder submodel, 409 LSTM cells in the decoder submodel and three hidden layers in the DNN submodel with 31, 96 and 128 neurons in each hidden layer, respectively. Thus, LSTMHybrid had a total of 1.5 million parameters, obtaining a representativeness higher than 94 % and an accuracy around of 20 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助林宇采纳,获得10
1秒前
崔略商完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
3秒前
小雯钱来完成签到,获得积分10
3秒前
弱水发布了新的文献求助10
4秒前
爱听歌的之瑶关注了科研通微信公众号
4秒前
4秒前
5秒前
大苏完成签到,获得积分10
5秒前
小蘑菇应助你才是小哭包采纳,获得10
5秒前
高贵以南完成签到,获得积分10
5秒前
6秒前
领导范儿应助崔略商采纳,获得10
6秒前
qiukeyingying发布了新的文献求助20
6秒前
科研通AI5应助xie采纳,获得10
6秒前
7秒前
香蕉觅云应助wf采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
艾玛发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
斯文败类应助ariel采纳,获得10
9秒前
10秒前
张楠发布了新的文献求助10
10秒前
10秒前
小菜鸟发布了新的文献求助10
11秒前
蟹蟹发布了新的文献求助10
11秒前
诚心桐发布了新的文献求助10
11秒前
11秒前
材料人发布了新的文献求助10
12秒前
斯文白白完成签到,获得积分20
12秒前
端庄书雁完成签到 ,获得积分10
12秒前
12秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3731957
求助须知:如何正确求助?哪些是违规求助? 3276317
关于积分的说明 9996422
捐赠科研通 2991854
什么是DOI,文献DOI怎么找? 1641806
邀请新用户注册赠送积分活动 780013
科研通“疑难数据库(出版商)”最低求助积分说明 748649