亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on rolling bearing virtual-real fusion life prediction with digital twin

方位(导航) 过程(计算) 计算机科学 传感器融合 断层(地质) 样品(材料) 理论(学习稳定性) 人工智能 机器学习 化学 色谱法 地震学 地质学 操作系统
作者
Wentao Zhao,Chao Zhang,Bin Fan,Jianguo Wang,Fengshou Gu,Oscar García Peyrano,Shuai Wang,Da Lv
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:198: 110434-110434 被引量:46
标识
DOI:10.1016/j.ymssp.2023.110434
摘要

The prediction accuracy of the remaining useful life of rolling bearings is greatly affected by the size of sample data, and it is difficult to obtain enough fault samples in practical applications. Digital twin technology can reproduce the operation process of rolling bearings and other mechanical equipment in the digital world, which provides a new paradigm for life prediction under the condition of small samples. In this paper, a virtual and real combination of life-cycle rolling bearing digital twin is proposed. The modified CycleGAN combined with Wasserstein distance is used to map the simulation data in virtual space to the measured data in physical space, which significantly reduces the error between the simulation data and the measured data. The effectiveness of the improved rolling bearing digital twin and the availability of simulation data are verified by experiments. The simulation data are applied to the advanced remaining useful life prediction method, and the high-precision life prediction of rolling bearings is realized. The comparison with the traditional life prediction method verifies that the proposed method can effectively solve the small sample problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
王饱饱完成签到 ,获得积分10
5秒前
5秒前
13秒前
彭彭完成签到,获得积分10
14秒前
共享精神应助ceeray23采纳,获得20
16秒前
吃了吃了完成签到,获得积分10
17秒前
大模型应助ceeray23采纳,获得20
19秒前
Yiphy发布了新的文献求助50
19秒前
yyqx发布了新的文献求助10
19秒前
领导范儿应助ceeray23采纳,获得20
23秒前
28秒前
慕青应助科研通管家采纳,获得10
29秒前
ho应助科研通管家采纳,获得10
29秒前
香蕉觅云应助科研通管家采纳,获得10
29秒前
29秒前
ho应助科研通管家采纳,获得10
29秒前
888应助yyqx采纳,获得10
32秒前
汉堡包应助Yiphy采纳,获得50
34秒前
刘xy完成签到,获得积分20
34秒前
53秒前
耐斯糖完成签到 ,获得积分10
53秒前
56秒前
58秒前
丘比特应助璟黎采纳,获得10
59秒前
孙小球完成签到,获得积分10
1分钟前
气945完成签到,获得积分10
1分钟前
Shawn发布了新的文献求助10
1分钟前
ljl86400完成签到,获得积分10
1分钟前
辞恙发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助卡皮巴拉采纳,获得10
1分钟前
孙小球发布了新的文献求助10
1分钟前
新新新新新发顶刊完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助ceeray23采纳,获得20
1分钟前
彭于晏应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5376343
求助须知:如何正确求助?哪些是违规求助? 4501460
关于积分的说明 14013061
捐赠科研通 4409230
什么是DOI,文献DOI怎么找? 2422111
邀请新用户注册赠送积分活动 1414926
关于科研通互助平台的介绍 1391787