Fixed Pattern Noise Removal Based on a Semi-Calibration Method

噪音(视频) 计算机科学 计算机视觉 校准 模式识别(心理学) 人工智能 数学 图像(数学) 统计
作者
Lingfei Song,Hua Huang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:45 (10): 11842-11855 被引量:2
标识
DOI:10.1109/tpami.2023.3274826
摘要

Due to the manufacturing imperfections, nonuniformities are ubiquitous in digital sensors, causing the notorious Fixed Pattern Noise (FPN). The ability of modern digital cameras to take images under low-light environments is severely limited by the FPN. This paper proposes a novel semi-calibration-based method for the FPN removal that utilizes a pre-calibrated Noise Pattern . The key observation of this work is that the FPN in each shot is actually a scaled Noise Pattern with an unknown scale parameter, since each pixel in the array generates a characteristic amount of dark current which is fundamentally determined by its physical properties. Given a noised image and the corresponding Noise Pattern , the scale parameter is automatically estimated, and then the FPN is removed by subtracting the scaled Noise Pattern from the noised image. The estimation of the scale parameter is based on an entropy minimization estimator, which is derived from the Maximum Likelihood principle and is further justified by subsequent analysis that minimizing the entropy uniquely identifies the true parameter. Convergence issues, as well as the optimality of the proposed estimator, are also theoretically discussed. Finally, some applications are given, illustrating the performance of the proposed FPN removal method in real-world tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
w_w应助执着的冰绿采纳,获得30
1秒前
1秒前
蘑菇发布了新的文献求助10
1秒前
Orange应助Abelsci采纳,获得10
2秒前
自信的嚓茶完成签到,获得积分20
2秒前
2秒前
mhy发布了新的文献求助10
3秒前
QQ发布了新的文献求助10
3秒前
ccc发布了新的文献求助10
4秒前
Franny完成签到 ,获得积分10
4秒前
啦啦啦完成签到 ,获得积分10
4秒前
amai完成签到,获得积分10
4秒前
5秒前
htscn发布了新的文献求助10
6秒前
6秒前
Eliauk发布了新的文献求助10
6秒前
叮叮当应助自信的嚓茶采纳,获得20
6秒前
yrt发布了新的文献求助10
6秒前
鱼咬羊发布了新的文献求助10
7秒前
7秒前
追寻羿发布了新的文献求助10
8秒前
8秒前
恰同学少年完成签到,获得积分10
8秒前
小二郎应助宁萌不酸采纳,获得10
9秒前
9秒前
祖优秀完成签到,获得积分20
9秒前
研友_VZG7GZ应助呆呆江采纳,获得10
9秒前
彭于晏应助年轻的熊猫采纳,获得10
11秒前
光亮蜗牛发布了新的文献求助10
11秒前
12秒前
咎牛青完成签到,获得积分10
12秒前
12秒前
聪明月饼发布了新的文献求助10
12秒前
13秒前
1580071102发布了新的文献求助10
14秒前
上官若男应助yrt采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309308
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510202
捐赠科研通 2617790
什么是DOI,文献DOI怎么找? 1430403
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649286