The aggregate index of systemic inflammation (AISI): a novel predictor for hypertension

医学 四分位数 混淆 内科学 全身炎症 全国健康与营养检查调查 比例危险模型 体质指数 全国死亡指数 肥胖 炎症 心脏病学 置信区间 人口 危险系数 环境卫生
作者
Jiaming Xiu,Xiaoxi Lin,Q Chen,Ping Yu,Jin Song Lu,Yingchi Yang,Weihua Chen,Kunming Bao,Junjie Wang,Jing Zhu,Xiaoying Zhang,Yuxiong Pan,Jiabin Tu,Kaihong Chen,Liling Chen
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media SA]
卷期号:10 被引量:1
标识
DOI:10.3389/fcvm.2023.1163900
摘要

Inflammation plays an important role in the pathophysiology of hypertension (HTN). Aggregate index of systemic inflammation (AISI), as a new inflammatory and prognostic marker has emerged recently. Our goal was to determine whether there was a relationship between HTN and AISI.We analyzed patients with HTN from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018. The primary end point was cardiovascular mortality. A total of 23,765 participants were divided into four groups according to the AISI quartile level. The association between AISI and cardiovascular mortality in patients with HTN was assessed by survival curves and Cox regression analyses based on NHANES recommended weights.High levels of AISI were significantly associated with cardiovascular mortality in patients with HTN. After full adjustment for confounders, there was no significant difference in the risk of cardiovascular mortality in Q2 and Q3 compared to Q1, while Q4 (HR: 1.91, 95% CI: 1.42-2.58; P < 0.001) had a higher risk of cardiovascular mortality compared to Q1. Results remained similar in subgroup analyses stratified by age (P for interaction = 0.568), gender (P for interaction = 0.059), and obesity (P for interaction = 0.289).In adults with HTN, elevated AISI levels are significantly associated with an increased risk of cardiovascular mortality and may serve as an early warning parameter for poor prognosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李沐唅完成签到 ,获得积分10
刚刚
1秒前
Ambit完成签到,获得积分20
1秒前
张小完成签到,获得积分20
2秒前
4秒前
TingtingGZ发布了新的文献求助10
4秒前
4秒前
5秒前
claud完成签到 ,获得积分10
6秒前
勤恳元枫完成签到,获得积分10
6秒前
6秒前
7秒前
自由醉薇完成签到 ,获得积分10
8秒前
蔚蓝天空完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
小小的手心完成签到,获得积分10
9秒前
卷卷完成签到,获得积分10
10秒前
11秒前
11秒前
顺利毕业完成签到,获得积分10
11秒前
Ambit发布了新的文献求助30
12秒前
wkjfh应助科研通管家采纳,获得10
12秒前
orixero应助懒羊羊大王采纳,获得10
12秒前
一二应助科研通管家采纳,获得10
12秒前
12秒前
zhonglv7应助科研通管家采纳,获得10
12秒前
stella完成签到,获得积分20
12秒前
12秒前
12秒前
wkjfh应助科研通管家采纳,获得20
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
小马甲应助科研通管家采纳,获得10
12秒前
霸气映之发布了新的文献求助10
12秒前
Live应助科研通管家采纳,获得10
12秒前
无极微光应助韦小宝采纳,获得20
12秒前
wkjfh应助科研通管家采纳,获得10
12秒前
13秒前
zhonglv7应助科研通管家采纳,获得10
13秒前
脑洞疼应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666801
求助须知:如何正确求助?哪些是违规求助? 4883139
关于积分的说明 15118110
捐赠科研通 4825764
什么是DOI,文献DOI怎么找? 2583569
邀请新用户注册赠送积分活动 1537746
关于科研通互助平台的介绍 1495952