Piezoelectric hybrid organic-inorganic perovskites (HOIPs) have emerged as promising materials for the development of self-powered electronic devices. These hybrid systems generally have low elastic moduli and are also intrinsically brittle, limiting their applications in mechanical-to-electrical energy conversion. Here, we report the synthesis of TMCM-CdCl3/PDMS (TMCM, trimethylchloromethyl ammonium; Cl, chloride; PDMS, polydimethylsiloxane) composites with high piezoelectricity. The TMCM-CdCl3 micro-rods can adhere with PDMS chains via the C–H···Cl interactions, leading to effective absorption of strain and corresponding efficient conversion to electric polarization. As a result, the energy harvesting devices made by the composite films give a high power density up to 115.2 μW/cm2, catching up with those of the state-of-the-art ceramic counterparts. In addition, the composite devices can harvest human motion energy and sense delicate body gestures. This work demonstrates that the piezoelectric HOIP/polymer composites can serve as promising materials for the development of self-powered flexible and wearable devices.