亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Using machine learning to realize genetic site screening and genomic prediction of productive traits in pigs

人工智能 基因组选择 支持向量机 随机森林 特征选择 机器学习 梯度升压 计算机科学 弹性网正则化 特质 选择(遗传算法) 最佳线性无偏预测 生物 遗传学 基因 单核苷酸多态性 基因型 程序设计语言
作者
Tao Xiang,Tao Li,Jielin Li,Xin Li,Jia Wang
出处
期刊:The FASEB Journal [Wiley]
卷期号:37 (6) 被引量:8
标识
DOI:10.1096/fj.202300245r
摘要

Genomic prediction, which is based on solving linear mixed-model (LMM) equations, is the most popular method for predicting breeding values or phenotypic performance for economic traits in livestock. With the need to further improve the performance of genomic prediction, nonlinear methods have been considered as an alternative and promising approach. The excellent ability to predict phenotypes in animal husbandry has been demonstrated by machine learning (ML) approaches, which have been rapidly developed. To investigate the feasibility and reliability of implementing genomic prediction using nonlinear models, the performances of genomic predictions for pig productive traits using the linear genomic selection model and nonlinear machine learning models were compared. Then, to reduce the high-dimensional features of genome sequence data, different machine learning algorithms, including the random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost) and convolutional neural network (CNN) algorithms, were used to perform genomic feature selection as well as genomic prediction on reduced feature genome data. All of the analyses were processed on two real pig datasets: the published PIC pig dataset and a dataset comprising data from a national pig nucleus herd in Chifeng, North China. Overall, the accuracies of predicted phenotypic performance for traits T1, T2, T3 and T5 in the PIC dataset and average daily gain (ADG) in the Chifeng dataset were higher using the ML methods than the LMM method, while those for trait T4 in the PIC dataset and total number of piglets born (TNB) in the Chifeng dataset were slightly lower using the ML methods than the LMM method. Among all the different ML algorithms, SVM was the most appropriate for genomic prediction. For the genomic feature selection experiment, the most stable and most accurate results across different algorithms were achieved using XGBoost in combination with the SVM algorithm. Through feature selection, the number of genomic markers can be reduced to 1 in 20, while the predictive performance on some traits can even be improved compared to using the full genome data. Finally, we developed a new tool that can be used to execute combined XGBoost and SVM algorithms to realize genomic feature selection and phenotypic prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
lpc完成签到 ,获得积分10
7秒前
8秒前
酷波er应助66采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
20秒前
23秒前
24秒前
学术包子发布了新的文献求助10
26秒前
Eatanicecube完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
38秒前
43秒前
学术包子完成签到,获得积分10
44秒前
44秒前
45秒前
量子星尘发布了新的文献求助10
46秒前
46秒前
ovo发布了新的文献求助10
48秒前
49秒前
66发布了新的文献求助10
52秒前
头秃科研人完成签到,获得积分10
53秒前
大大小完成签到,获得积分10
53秒前
58秒前
量子星尘发布了新的文献求助10
1分钟前
蛙蛙完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Timing侠发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Rita发布了新的文献求助30
1分钟前
尘尘完成签到,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得30
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
希望天下0贩的0应助ovo采纳,获得10
1分钟前
Alex发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743733
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462