An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network

光伏系统 计算机科学 人工神经网络 电力系统 概率逻辑 卷积神经网络 人工智能 功率(物理) 工程类 物理 量子力学 电气工程
作者
Yunfei Liu,Yan Liu,Hanhu Cai,Junran Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:343: 121139-121139 被引量:16
标识
DOI:10.1016/j.apenergy.2023.121139
摘要

Due to its importance regarding the integration, economic dispatch, and operation of PV smart grid systems, infrastructure planning, and budgeting, the accurate forecasting of photovoltaic (PV) power generation has drawn increasing research and industry attention. However, the instability, intermittence, and randomness of solar irradiance impose difficulties on the short-term economic dispatch of a smart integrated power, grid and significantly increase the risks arising from PV generation in a power system, exposing PV generators to potential additional costs. A deep convolutional neural network (CNN)-based method can effectively improve the performance of PV generation point prediction and probabilistic interval prediction by efficiently extracting nonlinear features at each frequency. Nevertheless, existing deep learning (DL) studies have mostly focused on more complex network topologies and data decomposition algorithms, ignoring the importance of simultaneously forecasting the PV power produced over multiple temporal periods. To solve the described challenge, we propose a novel two-stage DL approach for PV generation prediction. The end-to-end trained model used in the proposed PV generation forecasting method is an effort to combine the existing methods and avoid the separation of entire task, such as single time-scale PV generation forecasting, independent point forecasting, and probabilistic interval forecasting. A temporal signal decomposition technique called variational mode decomposition (VMD) is employed in the first stage to construct association mappings from fine-grained features to images. In the second stage, an innovative capsule CNN (ACCNet) is proposed to obtain very short-term multihorizon ahead output power predictions for seven different PV systems based on polycrystalline, monocrystalline, cadmium telluride (CdTe) thin-film, amorphous, copper indium gallium diselenide (CIGS) thin-film, heterojunction with intrinsic thin layer (HIT) hybrid, and concentrated photovoltaic (CPV) technologies. The input parameters for each system include solar radiation (diffuse/global horizontal radiation (DHR/GHR) and radiation diffuse/global tilted (RDT/RGT)) and ambient temperature, while the output parameter is the power output of each PV system. The proposed model is validated with the historical datasets of a PV system downloaded from the Desert Knowledge Precinct in Central Australia (DKASC) homepage. The performance of the developed method is proven in detail based on seven different PV systems over multiple data periods, and the experimental results reveal that the proposed approach displays significant improvements and robustness in point forecasting and probabilistic forecasting tasks. We will release the source code to ensure reproducibility and facilitate future work. Our model is open-sourced at https://github.com/YunDuanFei/ACCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁昆发布了新的文献求助10
刚刚
锦墨人生发布了新的文献求助30
1秒前
科研通AI5应助猪猪hero采纳,获得10
1秒前
NexusExplorer应助无情的白桃采纳,获得10
2秒前
sommer12345完成签到 ,获得积分10
2秒前
润润轩轩发布了新的文献求助10
3秒前
丁昆完成签到,获得积分10
5秒前
ding应助热情的阿猫桑采纳,获得10
7秒前
我是老大应助麦麦采纳,获得10
7秒前
Lyven发布了新的文献求助30
7秒前
xinxin完成签到,获得积分10
8秒前
玩命的靖仇完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
10秒前
微纳组刘同完成签到,获得积分10
10秒前
haojiaolv完成签到,获得积分10
11秒前
11秒前
11秒前
orixero应助Twikky采纳,获得10
12秒前
安玖完成签到,获得积分10
12秒前
dyh6802发布了新的文献求助10
13秒前
拉长的忆南完成签到,获得积分10
14秒前
镜哥完成签到,获得积分10
14秒前
garyaa完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
17完成签到,获得积分10
15秒前
今后应助冷静的毛豆采纳,获得20
15秒前
15秒前
小马哥36发布了新的文献求助10
15秒前
ttttttuu发布了新的文献求助10
15秒前
甜美的秋凌完成签到,获得积分10
16秒前
10发布了新的文献求助10
17秒前
高高完成签到 ,获得积分10
17秒前
AAAAAAAAAAA发布了新的文献求助10
17秒前
18秒前
wxaaaa完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794