An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network

光伏系统 计算机科学 人工神经网络 电力系统 概率逻辑 卷积神经网络 人工智能 功率(物理) 工程类 物理 量子力学 电气工程
作者
Yunfei Liu,Yan Liu,Hanhu Cai,Junran Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:343: 121139-121139 被引量:16
标识
DOI:10.1016/j.apenergy.2023.121139
摘要

Due to its importance regarding the integration, economic dispatch, and operation of PV smart grid systems, infrastructure planning, and budgeting, the accurate forecasting of photovoltaic (PV) power generation has drawn increasing research and industry attention. However, the instability, intermittence, and randomness of solar irradiance impose difficulties on the short-term economic dispatch of a smart integrated power, grid and significantly increase the risks arising from PV generation in a power system, exposing PV generators to potential additional costs. A deep convolutional neural network (CNN)-based method can effectively improve the performance of PV generation point prediction and probabilistic interval prediction by efficiently extracting nonlinear features at each frequency. Nevertheless, existing deep learning (DL) studies have mostly focused on more complex network topologies and data decomposition algorithms, ignoring the importance of simultaneously forecasting the PV power produced over multiple temporal periods. To solve the described challenge, we propose a novel two-stage DL approach for PV generation prediction. The end-to-end trained model used in the proposed PV generation forecasting method is an effort to combine the existing methods and avoid the separation of entire task, such as single time-scale PV generation forecasting, independent point forecasting, and probabilistic interval forecasting. A temporal signal decomposition technique called variational mode decomposition (VMD) is employed in the first stage to construct association mappings from fine-grained features to images. In the second stage, an innovative capsule CNN (ACCNet) is proposed to obtain very short-term multihorizon ahead output power predictions for seven different PV systems based on polycrystalline, monocrystalline, cadmium telluride (CdTe) thin-film, amorphous, copper indium gallium diselenide (CIGS) thin-film, heterojunction with intrinsic thin layer (HIT) hybrid, and concentrated photovoltaic (CPV) technologies. The input parameters for each system include solar radiation (diffuse/global horizontal radiation (DHR/GHR) and radiation diffuse/global tilted (RDT/RGT)) and ambient temperature, while the output parameter is the power output of each PV system. The proposed model is validated with the historical datasets of a PV system downloaded from the Desert Knowledge Precinct in Central Australia (DKASC) homepage. The performance of the developed method is proven in detail based on seven different PV systems over multiple data periods, and the experimental results reveal that the proposed approach displays significant improvements and robustness in point forecasting and probabilistic forecasting tasks. We will release the source code to ensure reproducibility and facilitate future work. Our model is open-sourced at https://github.com/YunDuanFei/ACCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助Jay01采纳,获得10
1秒前
冷静的尔冬完成签到 ,获得积分10
1秒前
小二郎应助李二二采纳,获得10
1秒前
bkagyin应助张哈哈采纳,获得10
4秒前
Xin完成签到,获得积分10
4秒前
5秒前
莫华龙发布了新的文献求助10
6秒前
勤奋的芷荷完成签到,获得积分10
7秒前
8秒前
8秒前
10秒前
突突突发布了新的文献求助10
10秒前
11秒前
13秒前
小蘑菇应助呜呜呜采纳,获得10
13秒前
荷欢笙发布了新的文献求助10
13秒前
14秒前
都是发布了新的文献求助10
15秒前
17秒前
嘟嘟嘟完成签到,获得积分10
17秒前
赵佳璐发布了新的文献求助10
19秒前
gqb发布了新的文献求助10
19秒前
20秒前
清璃发布了新的文献求助10
20秒前
21秒前
Dushine关注了科研通微信公众号
21秒前
zhuhaot发布了新的文献求助50
21秒前
零食完成签到 ,获得积分10
21秒前
21秒前
22秒前
咩吖给咩吖的求助进行了留言
23秒前
叶博完成签到,获得积分10
23秒前
DumBell完成签到,获得积分10
23秒前
呜呜呜发布了新的文献求助10
24秒前
25秒前
cherry发布了新的文献求助10
25秒前
26秒前
嘟嘟嘟发布了新的文献求助10
27秒前
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145912
求助须知:如何正确求助?哪些是违规求助? 2797359
关于积分的说明 7823805
捐赠科研通 2453697
什么是DOI,文献DOI怎么找? 1305818
科研通“疑难数据库(出版商)”最低求助积分说明 627574
版权声明 601491