亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network

光伏系统 计算机科学 人工神经网络 电力系统 概率逻辑 卷积神经网络 人工智能 功率(物理) 工程类 量子力学 电气工程 物理
作者
Yunfei Liu,Yan Liu,Hanhu Cai,Junran Zhang
出处
期刊:Applied Energy [Elsevier]
卷期号:343: 121139-121139 被引量:33
标识
DOI:10.1016/j.apenergy.2023.121139
摘要

Due to its importance regarding the integration, economic dispatch, and operation of PV smart grid systems, infrastructure planning, and budgeting, the accurate forecasting of photovoltaic (PV) power generation has drawn increasing research and industry attention. However, the instability, intermittence, and randomness of solar irradiance impose difficulties on the short-term economic dispatch of a smart integrated power, grid and significantly increase the risks arising from PV generation in a power system, exposing PV generators to potential additional costs. A deep convolutional neural network (CNN)-based method can effectively improve the performance of PV generation point prediction and probabilistic interval prediction by efficiently extracting nonlinear features at each frequency. Nevertheless, existing deep learning (DL) studies have mostly focused on more complex network topologies and data decomposition algorithms, ignoring the importance of simultaneously forecasting the PV power produced over multiple temporal periods. To solve the described challenge, we propose a novel two-stage DL approach for PV generation prediction. The end-to-end trained model used in the proposed PV generation forecasting method is an effort to combine the existing methods and avoid the separation of entire task, such as single time-scale PV generation forecasting, independent point forecasting, and probabilistic interval forecasting. A temporal signal decomposition technique called variational mode decomposition (VMD) is employed in the first stage to construct association mappings from fine-grained features to images. In the second stage, an innovative capsule CNN (ACCNet) is proposed to obtain very short-term multihorizon ahead output power predictions for seven different PV systems based on polycrystalline, monocrystalline, cadmium telluride (CdTe) thin-film, amorphous, copper indium gallium diselenide (CIGS) thin-film, heterojunction with intrinsic thin layer (HIT) hybrid, and concentrated photovoltaic (CPV) technologies. The input parameters for each system include solar radiation (diffuse/global horizontal radiation (DHR/GHR) and radiation diffuse/global tilted (RDT/RGT)) and ambient temperature, while the output parameter is the power output of each PV system. The proposed model is validated with the historical datasets of a PV system downloaded from the Desert Knowledge Precinct in Central Australia (DKASC) homepage. The performance of the developed method is proven in detail based on seven different PV systems over multiple data periods, and the experimental results reveal that the proposed approach displays significant improvements and robustness in point forecasting and probabilistic forecasting tasks. We will release the source code to ensure reproducibility and facilitate future work. Our model is open-sourced at https://github.com/YunDuanFei/ACCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PP关闭了PP文献求助
9秒前
11秒前
12秒前
lhr发布了新的文献求助30
16秒前
17秒前
23秒前
Jankin完成签到 ,获得积分10
24秒前
Fan应助lhr采纳,获得10
31秒前
顾矜应助lhr采纳,获得10
31秒前
37秒前
PP完成签到,获得积分10
38秒前
YifanWang应助科研通管家采纳,获得30
44秒前
YifanWang应助科研通管家采纳,获得30
44秒前
YifanWang应助科研通管家采纳,获得30
44秒前
YifanWang应助科研通管家采纳,获得30
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
YifanWang应助科研通管家采纳,获得30
44秒前
丘比特应助木昜采纳,获得10
50秒前
53秒前
1分钟前
1分钟前
如意蚂蚁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Jasper应助Karol采纳,获得10
1分钟前
Raunio完成签到,获得积分10
1分钟前
Criminology34举报旺旺雪饼求助涉嫌违规
1分钟前
1分钟前
1分钟前
Gossip完成签到,获得积分10
2分钟前
2分钟前
Gossip发布了新的文献求助30
2分钟前
2分钟前
ttxxcdx完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Fan应助fuyaoye2010采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
YifanWang应助科研通管家采纳,获得30
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746780
求助须知:如何正确求助?哪些是违规求助? 5438963
关于积分的说明 15355882
捐赠科研通 4886788
什么是DOI,文献DOI怎么找? 2627441
邀请新用户注册赠送积分活动 1575905
关于科研通互助平台的介绍 1532642