An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network

光伏系统 计算机科学 人工神经网络 电力系统 概率逻辑 卷积神经网络 人工智能 功率(物理) 工程类 量子力学 电气工程 物理
作者
Yunfei Liu,Yan Liu,Hanhu Cai,Junran Zhang
出处
期刊:Applied Energy [Elsevier BV]
卷期号:343: 121139-121139 被引量:20
标识
DOI:10.1016/j.apenergy.2023.121139
摘要

Due to its importance regarding the integration, economic dispatch, and operation of PV smart grid systems, infrastructure planning, and budgeting, the accurate forecasting of photovoltaic (PV) power generation has drawn increasing research and industry attention. However, the instability, intermittence, and randomness of solar irradiance impose difficulties on the short-term economic dispatch of a smart integrated power, grid and significantly increase the risks arising from PV generation in a power system, exposing PV generators to potential additional costs. A deep convolutional neural network (CNN)-based method can effectively improve the performance of PV generation point prediction and probabilistic interval prediction by efficiently extracting nonlinear features at each frequency. Nevertheless, existing deep learning (DL) studies have mostly focused on more complex network topologies and data decomposition algorithms, ignoring the importance of simultaneously forecasting the PV power produced over multiple temporal periods. To solve the described challenge, we propose a novel two-stage DL approach for PV generation prediction. The end-to-end trained model used in the proposed PV generation forecasting method is an effort to combine the existing methods and avoid the separation of entire task, such as single time-scale PV generation forecasting, independent point forecasting, and probabilistic interval forecasting. A temporal signal decomposition technique called variational mode decomposition (VMD) is employed in the first stage to construct association mappings from fine-grained features to images. In the second stage, an innovative capsule CNN (ACCNet) is proposed to obtain very short-term multihorizon ahead output power predictions for seven different PV systems based on polycrystalline, monocrystalline, cadmium telluride (CdTe) thin-film, amorphous, copper indium gallium diselenide (CIGS) thin-film, heterojunction with intrinsic thin layer (HIT) hybrid, and concentrated photovoltaic (CPV) technologies. The input parameters for each system include solar radiation (diffuse/global horizontal radiation (DHR/GHR) and radiation diffuse/global tilted (RDT/RGT)) and ambient temperature, while the output parameter is the power output of each PV system. The proposed model is validated with the historical datasets of a PV system downloaded from the Desert Knowledge Precinct in Central Australia (DKASC) homepage. The performance of the developed method is proven in detail based on seven different PV systems over multiple data periods, and the experimental results reveal that the proposed approach displays significant improvements and robustness in point forecasting and probabilistic forecasting tasks. We will release the source code to ensure reproducibility and facilitate future work. Our model is open-sourced at https://github.com/YunDuanFei/ACCNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助有机分子笼采纳,获得10
2秒前
Melody完成签到,获得积分10
2秒前
搜集达人应助橙子采纳,获得10
3秒前
甜甜玫瑰应助yuaasusanaann采纳,获得10
3秒前
王小志发布了新的文献求助10
4秒前
chen完成签到,获得积分10
4秒前
打打应助qq采纳,获得10
4秒前
4秒前
4秒前
5秒前
爱撒娇的长颈鹿完成签到,获得积分10
5秒前
7秒前
zzz关注了科研通微信公众号
7秒前
Chirstina完成签到,获得积分10
9秒前
小蘑菇应助xcz采纳,获得10
10秒前
甘木鸣发布了新的文献求助10
10秒前
10秒前
脆脆鲨完成签到 ,获得积分10
10秒前
Venus发布了新的文献求助10
10秒前
nichen发布了新的文献求助10
11秒前
脑洞疼应助meihui采纳,获得10
12秒前
共享精神应助哈哈采纳,获得10
14秒前
Venus完成签到,获得积分10
16秒前
xiao5424liu完成签到 ,获得积分10
16秒前
Tim完成签到,获得积分10
17秒前
盛盛发布了新的文献求助10
17秒前
天天快乐应助聪慧道罡采纳,获得10
18秒前
大模型应助ylq采纳,获得10
21秒前
Besty完成签到,获得积分10
21秒前
善学以致用应助yuaasusanaann采纳,获得10
22秒前
22秒前
zzl1111完成签到,获得积分10
22秒前
youyuer完成签到,获得积分10
22秒前
23秒前
Kate发布了新的文献求助10
24秒前
wanwan应助心如采纳,获得10
26秒前
26秒前
JJ完成签到,获得积分10
27秒前
youyuer发布了新的文献求助10
27秒前
酱酱发布了新的文献求助10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992317
求助须知:如何正确求助?哪些是违规求助? 3533285
关于积分的说明 11261852
捐赠科研通 3272704
什么是DOI,文献DOI怎么找? 1805867
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459