Water Absorption Behavior of Dual-Sponge Structure Sealing Elastomers Assisted by Machine Learning

海绵 吸水率 对偶(语法数字) 弹性体 材料科学 吸收(声学) 复合材料 高分子科学 化学工程 工程类 地质学 艺术 古生物学 文学类
作者
Wentong Lu,Hao Tian,Yan Liu,Yiyao Zhu,Peilong Zhou,Jincheng Wang,Long Li,Jianhua Xiao
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (11): 6358-6370
标识
DOI:10.1021/acsapm.4c00557
摘要

Water-absorbing expanded elastomers hold significant importance in the fields of engineering and construction. However, traditional expanded elastomers exhibit common characteristics such as slow swelling rates, leakage after water absorption, and low strength. This research report proposed an approach for developing high-strength water-absorbing expanded elastomers with a dual-sponge structure. The elastomers were prepared by incorporating a composite water-absorbing resin with a porous structure into a fluoroelastomer matrix. Additionally, this research validates this research under the background of machine learning using a random forest model. The water absorption rate of this research material can reach 30 times its own weight with an extremely rapid water absorption response. Its strength can reach 17.37 MPa, retaining more than 50% of moisture and maintaining environmental humidity between 50 and 60%. The R2 value of the machine learning model reaches 0.998, proving the strong guidance significance of the random forest model. Furthermore, the simplicity of the treatment method employed in this research ensures low economic costs and ease of industrial application. The aim of this study is to improve sealing in water-related environments in infrastructure with strengths up to 3–4 times higher than those of seals commonly used at this stage and with greatly improved water absorption response rates. This makes it possible to completely replace the seals commonly used in shield machines today, and medical devices in the field of hemostatic dressings can be developed by using the strategy of this research as a blueprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闹闹加油完成签到,获得积分10
1秒前
HZ发布了新的文献求助10
1秒前
Szw666完成签到,获得积分10
1秒前
2秒前
2秒前
蕾蕾完成签到,获得积分10
2秒前
fzx发布了新的文献求助10
2秒前
满满完成签到,获得积分10
2秒前
洪云峰完成签到 ,获得积分10
3秒前
粗犷的谷秋完成签到 ,获得积分10
4秒前
华仔应助小马采纳,获得10
4秒前
4秒前
Orange应助科研鸟采纳,获得10
4秒前
5秒前
李健的小迷弟应助tejing1158采纳,获得10
5秒前
科研女仆完成签到 ,获得积分10
5秒前
6秒前
整齐的1223发布了新的文献求助10
6秒前
romance发布了新的文献求助10
6秒前
7秒前
玉子烧完成签到,获得积分10
7秒前
7秒前
Tushar发布了新的文献求助10
7秒前
闹闹加油发布了新的文献求助60
8秒前
8秒前
九七就是我完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助30
8秒前
花痴的千风完成签到,获得积分10
8秒前
CodeCraft应助王昕钥采纳,获得10
9秒前
9秒前
不安傲松完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009905
求助须知:如何正确求助?哪些是违规求助? 3549896
关于积分的说明 11304149
捐赠科研通 3284441
什么是DOI,文献DOI怎么找? 1810658
邀请新用户注册赠送积分活动 886424
科研通“疑难数据库(出版商)”最低求助积分说明 811406