Water Absorption Behavior of Dual-Sponge Structure Sealing Elastomers Assisted by Machine Learning

海绵 吸水率 对偶(语法数字) 弹性体 材料科学 吸收(声学) 复合材料 高分子科学 化学工程 工程类 地质学 艺术 古生物学 文学类
作者
Wentong Lu,Hao Tian,Yan Liu,Yiyao Zhu,Peilong Zhou,Jincheng Wang,Long Li,Jianhua Xiao
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (11): 6358-6370
标识
DOI:10.1021/acsapm.4c00557
摘要

Water-absorbing expanded elastomers hold significant importance in the fields of engineering and construction. However, traditional expanded elastomers exhibit common characteristics such as slow swelling rates, leakage after water absorption, and low strength. This research report proposed an approach for developing high-strength water-absorbing expanded elastomers with a dual-sponge structure. The elastomers were prepared by incorporating a composite water-absorbing resin with a porous structure into a fluoroelastomer matrix. Additionally, this research validates this research under the background of machine learning using a random forest model. The water absorption rate of this research material can reach 30 times its own weight with an extremely rapid water absorption response. Its strength can reach 17.37 MPa, retaining more than 50% of moisture and maintaining environmental humidity between 50 and 60%. The R2 value of the machine learning model reaches 0.998, proving the strong guidance significance of the random forest model. Furthermore, the simplicity of the treatment method employed in this research ensures low economic costs and ease of industrial application. The aim of this study is to improve sealing in water-related environments in infrastructure with strengths up to 3–4 times higher than those of seals commonly used at this stage and with greatly improved water absorption response rates. This makes it possible to completely replace the seals commonly used in shield machines today, and medical devices in the field of hemostatic dressings can be developed by using the strategy of this research as a blueprint.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Julo发布了新的文献求助10
1秒前
1秒前
kkt完成签到,获得积分10
2秒前
2秒前
三木完成签到 ,获得积分10
2秒前
默默完成签到,获得积分10
2秒前
2秒前
2秒前
maxine完成签到,获得积分10
2秒前
HH发布了新的文献求助10
2秒前
辛勤的鹰完成签到 ,获得积分10
3秒前
老大蒂亚戈完成签到,获得积分0
3秒前
小吉麻麻发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
4秒前
AIUR给AIUR的求助进行了留言
4秒前
量子星尘发布了新的文献求助10
5秒前
科研通AI6应助Amo采纳,获得30
5秒前
缥缈幻柏完成签到,获得积分20
5秒前
5秒前
Akim应助香菜味钠片采纳,获得10
5秒前
5秒前
5秒前
5秒前
nefu biology发布了新的文献求助10
5秒前
默默发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
鱼鱼鱼发布了新的文献求助10
8秒前
哈哈我发布了新的文献求助10
8秒前
lilia发布了新的文献求助10
8秒前
8秒前
打打应助火乐乐采纳,获得10
8秒前
Ww发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679