Water Absorption Behavior of Dual-Sponge Structure Sealing Elastomers Assisted by Machine Learning

海绵 吸水率 对偶(语法数字) 弹性体 材料科学 吸收(声学) 复合材料 高分子科学 化学工程 工程类 地质学 艺术 古生物学 文学类
作者
Wentong Lu,Hao Tian,Yan Liu,Yiyao Zhu,Peilong Zhou,Jincheng Wang,Long Li,Jianhua Xiao
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (11): 6358-6370
标识
DOI:10.1021/acsapm.4c00557
摘要

Water-absorbing expanded elastomers hold significant importance in the fields of engineering and construction. However, traditional expanded elastomers exhibit common characteristics such as slow swelling rates, leakage after water absorption, and low strength. This research report proposed an approach for developing high-strength water-absorbing expanded elastomers with a dual-sponge structure. The elastomers were prepared by incorporating a composite water-absorbing resin with a porous structure into a fluoroelastomer matrix. Additionally, this research validates this research under the background of machine learning using a random forest model. The water absorption rate of this research material can reach 30 times its own weight with an extremely rapid water absorption response. Its strength can reach 17.37 MPa, retaining more than 50% of moisture and maintaining environmental humidity between 50 and 60%. The R2 value of the machine learning model reaches 0.998, proving the strong guidance significance of the random forest model. Furthermore, the simplicity of the treatment method employed in this research ensures low economic costs and ease of industrial application. The aim of this study is to improve sealing in water-related environments in infrastructure with strengths up to 3–4 times higher than those of seals commonly used at this stage and with greatly improved water absorption response rates. This makes it possible to completely replace the seals commonly used in shield machines today, and medical devices in the field of hemostatic dressings can be developed by using the strategy of this research as a blueprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助求求了采纳,获得10
刚刚
Dita发布了新的文献求助10
1秒前
ei发布了新的文献求助10
1秒前
光亮觅云发布了新的文献求助30
1秒前
浮游应助张亚博采纳,获得10
1秒前
深情安青应助张亚博采纳,获得10
1秒前
2秒前
chy发布了新的文献求助10
2秒前
2秒前
含蓄的小熊猫完成签到 ,获得积分10
3秒前
YXYYXYYXY完成签到,获得积分10
3秒前
5秒前
学术的刘发布了新的文献求助10
5秒前
wdwd完成签到,获得积分10
6秒前
杨哈哈哈完成签到 ,获得积分10
6秒前
研友_VZG7GZ应助风清扬采纳,获得30
7秒前
New完成签到,获得积分10
7秒前
8秒前
WJL完成签到 ,获得积分10
8秒前
天才Kitty猫完成签到,获得积分10
9秒前
baiseqiutian发布了新的文献求助10
9秒前
Havoc完成签到,获得积分10
10秒前
Ting发布了新的文献求助10
10秒前
XU完成签到,获得积分10
10秒前
苏东方发布了新的文献求助10
10秒前
11秒前
ddd发布了新的文献求助10
12秒前
XZY完成签到,获得积分10
12秒前
12秒前
隐形曼青应助贝肯尼采纳,获得10
13秒前
cyh应助大胆的雪糕采纳,获得10
13秒前
科研通AI6应助小风吹着采纳,获得10
14秒前
14秒前
Wxc发布了新的文献求助10
15秒前
Dita完成签到,获得积分10
15秒前
15秒前
失眠的诗蕊应助鲤鱼荔枝采纳,获得20
16秒前
大个应助苏栀采纳,获得10
16秒前
科研通AI6应助小鑫采纳,获得10
18秒前
小猫卡车完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360761
求助须知:如何正确求助?哪些是违规求助? 4491279
关于积分的说明 13981825
捐赠科研通 4393949
什么是DOI,文献DOI怎么找? 2413668
邀请新用户注册赠送积分活动 1406502
关于科研通互助平台的介绍 1381004