Water Absorption Behavior of Dual-Sponge Structure Sealing Elastomers Assisted by Machine Learning

海绵 吸水率 对偶(语法数字) 弹性体 材料科学 吸收(声学) 复合材料 高分子科学 化学工程 工程类 地质学 艺术 古生物学 文学类
作者
Wentong Lu,Hao Tian,Yan Liu,Yiyao Zhu,Peilong Zhou,Jincheng Wang,Long Li,Jianhua Xiao
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (11): 6358-6370
标识
DOI:10.1021/acsapm.4c00557
摘要

Water-absorbing expanded elastomers hold significant importance in the fields of engineering and construction. However, traditional expanded elastomers exhibit common characteristics such as slow swelling rates, leakage after water absorption, and low strength. This research report proposed an approach for developing high-strength water-absorbing expanded elastomers with a dual-sponge structure. The elastomers were prepared by incorporating a composite water-absorbing resin with a porous structure into a fluoroelastomer matrix. Additionally, this research validates this research under the background of machine learning using a random forest model. The water absorption rate of this research material can reach 30 times its own weight with an extremely rapid water absorption response. Its strength can reach 17.37 MPa, retaining more than 50% of moisture and maintaining environmental humidity between 50 and 60%. The R2 value of the machine learning model reaches 0.998, proving the strong guidance significance of the random forest model. Furthermore, the simplicity of the treatment method employed in this research ensures low economic costs and ease of industrial application. The aim of this study is to improve sealing in water-related environments in infrastructure with strengths up to 3–4 times higher than those of seals commonly used at this stage and with greatly improved water absorption response rates. This makes it possible to completely replace the seals commonly used in shield machines today, and medical devices in the field of hemostatic dressings can be developed by using the strategy of this research as a blueprint.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助Sere采纳,获得10
1秒前
wlnhyF发布了新的文献求助10
1秒前
4892完成签到 ,获得积分10
2秒前
2秒前
害羞的镜子完成签到,获得积分10
2秒前
顾矜应助踏实的酸奶采纳,获得10
2秒前
2秒前
千影发布了新的文献求助10
2秒前
3秒前
ARIA发布了新的文献求助10
4秒前
lilili应助猪猪hero采纳,获得10
4秒前
共享精神应助简单灵凡采纳,获得10
5秒前
5秒前
zhou发布了新的文献求助10
7秒前
酷波er应助DJ采纳,获得10
9秒前
9秒前
日暮里发布了新的文献求助10
9秒前
9秒前
9秒前
wy.he应助ShengzhangLiu采纳,获得10
9秒前
杜青发布了新的文献求助10
10秒前
szh123完成签到,获得积分10
10秒前
yeah18完成签到,获得积分10
10秒前
式微完成签到,获得积分10
11秒前
Mic应助猪猪hero采纳,获得10
12秒前
土5完成签到,获得积分20
12秒前
13秒前
万能图书馆应助千影采纳,获得10
13秒前
旅行者发布了新的文献求助10
13秒前
深情安青应助愤怒的鲨鱼采纳,获得10
13秒前
着急的白柏完成签到,获得积分10
14秒前
14秒前
byumi发布了新的文献求助10
14秒前
寒冷威发布了新的文献求助10
15秒前
13201099463发布了新的文献求助10
15秒前
慕青应助Hathaway采纳,获得10
15秒前
xiaojing发布了新的文献求助100
16秒前
辉腾发布了新的文献求助10
17秒前
爆米花应助土5采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776