Water Absorption Behavior of Dual-Sponge Structure Sealing Elastomers Assisted by Machine Learning

海绵 吸水率 对偶(语法数字) 弹性体 材料科学 吸收(声学) 复合材料 高分子科学 化学工程 工程类 地质学 艺术 文学类 古生物学
作者
Wentong Lu,Hao Tian,Yan Liu,Yiyao Zhu,Peilong Zhou,Jincheng Wang,Long Li,Jianhua Xiao
出处
期刊:ACS applied polymer materials [American Chemical Society]
卷期号:6 (11): 6358-6370
标识
DOI:10.1021/acsapm.4c00557
摘要

Water-absorbing expanded elastomers hold significant importance in the fields of engineering and construction. However, traditional expanded elastomers exhibit common characteristics such as slow swelling rates, leakage after water absorption, and low strength. This research report proposed an approach for developing high-strength water-absorbing expanded elastomers with a dual-sponge structure. The elastomers were prepared by incorporating a composite water-absorbing resin with a porous structure into a fluoroelastomer matrix. Additionally, this research validates this research under the background of machine learning using a random forest model. The water absorption rate of this research material can reach 30 times its own weight with an extremely rapid water absorption response. Its strength can reach 17.37 MPa, retaining more than 50% of moisture and maintaining environmental humidity between 50 and 60%. The R2 value of the machine learning model reaches 0.998, proving the strong guidance significance of the random forest model. Furthermore, the simplicity of the treatment method employed in this research ensures low economic costs and ease of industrial application. The aim of this study is to improve sealing in water-related environments in infrastructure with strengths up to 3–4 times higher than those of seals commonly used at this stage and with greatly improved water absorption response rates. This makes it possible to completely replace the seals commonly used in shield machines today, and medical devices in the field of hemostatic dressings can be developed by using the strategy of this research as a blueprint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助David采纳,获得10
刚刚
刚刚
追尾的猫发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
何ry发布了新的文献求助10
2秒前
ding应助冬无青山采纳,获得10
2秒前
孟风尘发布了新的文献求助10
3秒前
leo发布了新的文献求助10
3秒前
3秒前
勤恳的糖豆完成签到,获得积分10
3秒前
3秒前
彭于晏应助罗明芳采纳,获得10
4秒前
zhangyu发布了新的文献求助10
4秒前
彭于晏应助怀民已就寝采纳,获得10
5秒前
于晓雅完成签到,获得积分10
5秒前
黄晴发布了新的文献求助10
6秒前
小薇完成签到,获得积分10
6秒前
6秒前
6秒前
dalin发布了新的文献求助10
7秒前
领导范儿应助linade采纳,获得10
7秒前
7秒前
7秒前
8秒前
虚幻白桃完成签到,获得积分10
8秒前
FashionBoy应助sfx采纳,获得10
9秒前
DJY发布了新的文献求助10
9秒前
9秒前
9秒前
fjfjfj完成签到,获得积分10
9秒前
9秒前
jianglan完成签到,获得积分10
10秒前
11秒前
randi完成签到,获得积分10
12秒前
12秒前
cyw完成签到,获得积分10
12秒前
13秒前
xyh关闭了xyh文献求助
13秒前
David完成签到,获得积分10
14秒前
juwairen119发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
The Red Peril Explained: Every Man, Woman & Child Affected 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5012831
求助须知:如何正确求助?哪些是违规求助? 4253941
关于积分的说明 13256670
捐赠科研通 4056949
什么是DOI,文献DOI怎么找? 2219007
邀请新用户注册赠送积分活动 1228513
关于科研通互助平台的介绍 1151089