A Noval Super-Resolution Model for 10-m Mangrove Mapping With Landsat-5

遥感 红树林 高光谱成像 地质学 图像分辨率 分辨率(逻辑) 计算机科学 人工智能 生态学 生物
作者
Wei Chen,Jinyan Tian,Jie Song,Xiaojuan Li,Yinghai Ke,Lin Zhu,Yongxin Yu,Ou Yang,Huili Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:3
标识
DOI:10.1109/tgrs.2024.3407363
摘要

Existing temporal mangrove products are at a 30-m resolution from Landsat, facing challenges such as unclear delineation of mangrove community edges, difficulty in identifying creeks and open spaces within communities, and ineffective recognition of small patches. Therefore, there is an urgent need to produce higher resolution temporal mangrove products (e.g., 10-m) with Landsat, particularly considering the absence of available Sentinel imagery before 2015. To this end, we propose a novel super-resolution model that incorporating Residual Channel Attention Networks (RCAN) and Texture Transformer Network (TTSR) to generate 10-m Landsat-5, namely RCAN-TTSR. RCAN and TTSR play crucial roles from different perspectives in the super-resolution process, respectively. TTSR accurately transfers texture information from Sentinel-2 to Landsat by computing the texture correlation between them. On the other hand, RCAN assigns different weights to multiple low-frequency features and a small number of high-frequency features derived from the raw bands of Landsat imagery, thus achieving better super-resolution outcomes. The results demonstrate that images produced by this model significantly outperform existing super-resolution models in terms of PSNR and SSIM metrics. Furthermore, the random forest classifier was employed for mangrove mapping. Compared to 30-m products, our 10-m map shows higher mapping accuracy and finer spatial details.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴山兰发布了新的文献求助20
1秒前
思睿拜发布了新的文献求助10
2秒前
nick发布了新的文献求助10
2秒前
2秒前
U9A发布了新的文献求助10
3秒前
3秒前
Mark发布了新的文献求助10
3秒前
斐然完成签到,获得积分20
3秒前
我是老大应助代代采纳,获得10
4秒前
6秒前
evak发布了新的文献求助10
6秒前
852应助小通采纳,获得10
7秒前
siriuslee99完成签到,获得积分10
7秒前
蓝刺完成签到,获得积分10
11秒前
高贵紫丝发布了新的文献求助10
11秒前
Xiaoxiao应助小小怪下士采纳,获得10
12秒前
12秒前
13秒前
xmh完成签到,获得积分10
13秒前
文迪厄尔完成签到,获得积分10
13秒前
13秒前
充电宝应助yjihn采纳,获得10
15秒前
高级丹药师完成签到,获得积分10
16秒前
weijian完成签到,获得积分10
16秒前
17秒前
morii发布了新的文献求助10
17秒前
18秒前
19秒前
小通完成签到,获得积分10
20秒前
21秒前
22秒前
星辰大海应助shinn采纳,获得10
23秒前
24秒前
24秒前
kxdxng完成签到 ,获得积分10
26秒前
Xiaoxiao应助VitoLi采纳,获得10
26秒前
沫沫发布了新的文献求助20
27秒前
wyy发布了新的文献求助10
27秒前
树精发布了新的文献求助10
29秒前
九天发布了新的文献求助10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528