遥感
红树林
高光谱成像
地质学
图像分辨率
分辨率(逻辑)
计算机科学
人工智能
生态学
生物
作者
Wei Chen,Jianbo Tian,Jie Song,Xiaojuan Li,Yinghai Ke,Lin Zhu,Yongxin Yu,Ou Yang,Huili Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:62: 1-12
标识
DOI:10.1109/tgrs.2024.3407363
摘要
Existing temporal mangrove products are at a 30-m resolution from Landsat, facing challenges such as unclear delineation of mangrove community edges, difficulty in identifying creeks and open spaces within communities, and ineffective recognition of small patches. Therefore, there is an urgent need to produce higher resolution temporal mangrove products (e.g., 10-m) with Landsat, particularly considering the absence of available Sentinel imagery before 2015. To this end, we propose a novel super-resolution model that incorporating Residual Channel Attention Networks (RCAN) and Texture Transformer Network (TTSR) to generate 10-m Landsat-5, namely RCAN-TTSR. RCAN and TTSR play crucial roles from different perspectives in the super-resolution process, respectively. TTSR accurately transfers texture information from Sentinel-2 to Landsat by computing the texture correlation between them. On the other hand, RCAN assigns different weights to multiple low-frequency features and a small number of high-frequency features derived from the raw bands of Landsat imagery, thus achieving better super-resolution outcomes. The results demonstrate that images produced by this model significantly outperform existing super-resolution models in terms of PSNR and SSIM metrics. Furthermore, the random forest classifier was employed for mangrove mapping. Compared to 30-m products, our 10-m map shows higher mapping accuracy and finer spatial details.
科研通智能强力驱动
Strongly Powered by AbleSci AI