亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modality assisted semi-supervised brain tumor segmentation in non-dominant modality based on consistency learning

模态(人机交互) 人工智能 一致性(知识库) 分割 计算机科学 模式识别(心理学) 计算机视觉
作者
Z. Li,Chen Huang,Shipeng Xie
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-11
标识
DOI:10.1109/tim.2024.3400343
摘要

Multimodal Magnetic resonance imaging (MRI) provide wealthy complementary information for determining the anatomical structure and pathological features of tumors. However, due to the limitations of patient progression and imaging cost, complete acquisition of MRI in various modalities is often not possible in clinic. To achieve segmentation effect in non-dominant modalities that is achieved in dominant modalities, encouraged by potential value of intrinsic connections between different modalities and considering the difficulty of pixel-level annotation of medical images, we propose a win-win approach called multimodality-assisted semi-supervised segmentation network (M²S³-Net). The core of our proposed approach is a multi-nondominant modality-assisted semi-supervised training strategy, which extracts generic and robust modality features from a limited annotated image by learning implicit features between two nondominant modalities to achieve information complementarity. To accommodate the above framework, we further propose modality fusion module (MFM) and cross-modality-assisted skip-connection (CMA skip-connection), which adaptively aggregate modality-independent features in a learnable manner to enhance the representativeness of deep models. Experiments on the public dataset BraTS2019 show that for the segmentation of perineural edema, using two non-dominant modalities, the proposed method achieves up to 77.82% (10% labeling) and 78.33% (20% labeling) of the dice coefficients, which is over 10% improvement compared to segmentation networks based on Semi-Supervised Learning (SSL) that utilizes only a single non-dominant modality. To a single dominant modality, it is 6.14% and 6.35% respectively. Compared with other multimodal segmentation methods, our method achieves 83.55% in tumor core using only 20% labels, which is superior to previous methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuqizong123发布了新的文献求助10
1秒前
liuqizong123完成签到,获得积分10
6秒前
20秒前
24秒前
33秒前
38秒前
嘤嘤怪完成签到 ,获得积分10
43秒前
59秒前
Wei发布了新的文献求助10
1分钟前
数学情缘完成签到 ,获得积分10
1分钟前
oracl完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Jeriu发布了新的文献求助10
1分钟前
1分钟前
Jeriu完成签到,获得积分10
1分钟前
Wei发布了新的文献求助10
1分钟前
Jasper应助笨笨小熊猫采纳,获得10
2分钟前
2分钟前
神说要有光完成签到,获得积分10
2分钟前
Wei发布了新的文献求助10
2分钟前
王柯文完成签到,获得积分10
2分钟前
Wei发布了新的文献求助10
2分钟前
安详跳跳糖完成签到,获得积分10
2分钟前
3分钟前
学术小白完成签到,获得积分10
3分钟前
4分钟前
4分钟前
英俊的铭应助筱可可采纳,获得10
5分钟前
5分钟前
5分钟前
耍酷的小白菜完成签到,获得积分10
6分钟前
Jasper应助秋听寒采纳,获得10
6分钟前
Albert完成签到,获得积分10
6分钟前
7分钟前
alin完成签到,获得积分10
8分钟前
8分钟前
alin发布了新的文献求助10
8分钟前
8分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865798
捐赠科研通 2463927
什么是DOI,文献DOI怎么找? 1311677
科研通“疑难数据库(出版商)”最低求助积分说明 629688
版权声明 601853