亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-comparative review of Machine learning for plant disease detection: apple, cassava, cotton and potato plants

曼尼霍特埃斯库兰塔酒店 植物病害 生物 机器学习 生物技术 人工智能 农学 计算机科学
作者
James Daniel Omaye,Emeka Ogbuju,Grace Ataguba,Oluwayemisi Jaiyeoba,Joseph Aneke,Francisca Oladipo
出处
期刊:Artificial intelligence in agriculture [Elsevier]
卷期号:12: 127-151 被引量:3
标识
DOI:10.1016/j.aiia.2024.04.002
摘要

Plant disease detection has played a significant role in combating plant diseases that pose a threat to global agriculture and food security. Detecting these diseases early can help mitigate their impact and ensure healthy crop yields. Machine learning algorithms have emerged as powerful tools for accurately identifying and classifying a wide range of plant diseases from trained image datasets of affected crops. These algorithms, including deep learning algorithms, have shown remarkable success in recognizing disease patterns and early signs of plant diseases. Besides early detection, there are other potential benefits of machine learning algorithms in overall plant disease management, such as soil and climatic condition predictions for plants, pest identification, proximity detection, and many more. Over the years, research has focused on using machine-learning algorithms for plant disease detection. Nevertheless, little is known about the extent to which the research community has explored machine learning algorithms to cover other significant areas of plant disease management. In view of this, we present a cross-comparative review of machine learning algorithms and applications designed for plant disease detection with a specific focus on four (4) economically important plants: apple, cassava, cotton, and potato. We conducted a systematic review of articles published between 2013 and 2023 to explore trends in the research community over the years. After filtering a number of articles based on our inclusion criteria, including articles that present individual prediction accuracy for classes of disease associated with the selected plants, 113 articles were considered relevant. From these articles, we analyzed the state-of-the-art techniques, challenges, and future prospects of using machine learning for disease identification of the selected plants. Results from our review show that deep learning and other algorithms performed significantly well in detecting plant diseases. In addition, we found a few references to plant disease management covering prevention, diagnosis, control, and monitoring. In view of this, little or no work has explored the prediction of the recovery of affected plants. Hence, we propose opportunities for developing machine learning-based technologies to cover prevention, diagnosis, control, monitoring, and recovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
嗯哼举报袁东求助涉嫌违规
7秒前
小赵完成签到 ,获得积分10
7秒前
www发布了新的文献求助10
8秒前
oxs完成签到 ,获得积分10
22秒前
Chaos完成签到 ,获得积分10
44秒前
44秒前
矜天完成签到 ,获得积分10
47秒前
花花123发布了新的文献求助10
48秒前
59秒前
呱呱乐发布了新的文献求助10
1分钟前
1分钟前
陶醉觅夏完成签到,获得积分20
1分钟前
峰feng完成签到 ,获得积分10
1分钟前
1分钟前
李健的小迷弟应助nazar采纳,获得10
1分钟前
1分钟前
JamesPei应助可爱航采纳,获得30
1分钟前
Josieeee发布了新的文献求助10
1分钟前
1分钟前
饱满苞络完成签到,获得积分10
1分钟前
wuxiaojiao完成签到 ,获得积分10
1分钟前
文子完成签到 ,获得积分10
1分钟前
1分钟前
nazar发布了新的文献求助10
1分钟前
Singularity应助Iusolite采纳,获得10
1分钟前
Josieeee完成签到,获得积分10
1分钟前
可爱航完成签到 ,获得积分20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
饱满苞络应助科研通管家采纳,获得10
1分钟前
赘婿应助lingzhiyi采纳,获得10
2分钟前
毛豆应助XJYXJY采纳,获得10
2分钟前
Stroeve完成签到,获得积分10
2分钟前
XJYXJY完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Iusolite完成签到,获得积分10
2分钟前
lingzhiyi发布了新的文献求助10
2分钟前
大力黑米完成签到 ,获得积分10
2分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422838
求助须知:如何正确求助?哪些是违规求助? 3023211
关于积分的说明 8903819
捐赠科研通 2710590
什么是DOI,文献DOI怎么找? 1486598
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682330