A goal-conditioned policy search method with multi-timescale value function tuning

强化学习 贝尔曼方程 计算机科学 一般化 功能(生物学) 数学优化 价值(数学) 人工智能 约束(计算机辅助设计) 机器人 代表(政治) 机器学习 数学 进化生物学 生物 数学分析 几何学 政治 政治学 法学
作者
Zhihong Jiang,Jiachen Hu,Yan Zhao,Xiao Huang,Hui Li
标识
DOI:10.1108/ria-11-2023-0167
摘要

Purpose Current reinforcement learning (RL) algorithms are facing issues such as low learning efficiency and poor generalization performance, which significantly limit their practical application in real robots. This paper aims to adopt a hybrid model-based and model-free policy search method with multi-timescale value function tuning, aiming to allow robots to learn complex motion planning skills in multi-goal and multi-constraint environments with a few interactions. Design/methodology/approach A goal-conditioned model-based and model-free search method with multi-timescale value function tuning is proposed in this paper. First, the authors construct a multi-goal, multi-constrained policy optimization approach that fuses model-based policy optimization with goal-conditioned, model-free learning. Soft constraints on states and controls are applied to ensure fast and stable policy iteration. Second, an uncertainty-aware multi-timescale value function learning method is proposed, which constructs a multi-timescale value function network and adaptively chooses the value function planning timescales according to the value prediction uncertainty. It implicitly reduces the value representation complexity and improves the generalization performance of the policy. Findings The algorithm enables physical robots to learn generalized skills in real-world environments through a handful of trials. The simulation and experimental results show that the algorithm outperforms other relevant model-based and model-free RL algorithms. Originality/value This paper combines goal-conditioned RL and the model predictive path integral method into a unified model-based policy search framework, which improves the learning efficiency and policy optimality of motor skill learning in multi-goal and multi-constrained environments. An uncertainty-aware multi-timescale value function learning and selection method is proposed to overcome long horizon problems, improve optimal policy resolution and therefore enhance the generalization ability of goal-conditioned RL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zengtx1发布了新的文献求助10
3秒前
烤饼子完成签到,获得积分10
3秒前
5秒前
9秒前
9秒前
10秒前
陈槊诸完成签到 ,获得积分10
11秒前
Hannah完成签到,获得积分10
11秒前
金长慧发布了新的文献求助80
11秒前
奋斗慕凝完成签到 ,获得积分10
12秒前
英俊的铭应助落晨采纳,获得10
12秒前
国郭发布了新的文献求助10
13秒前
sissi225发布了新的文献求助10
14秒前
ayayaya完成签到 ,获得积分10
14秒前
我是老大应助MQRR采纳,获得10
15秒前
桀桀桀发布了新的文献求助10
15秒前
16秒前
20秒前
1234发布了新的文献求助10
20秒前
大大怪发布了新的文献求助10
21秒前
health__up发布了新的文献求助10
21秒前
21秒前
桀桀桀完成签到,获得积分10
21秒前
小粒橙完成签到 ,获得积分10
24秒前
SunJc完成签到,获得积分10
24秒前
板凳完成签到 ,获得积分20
25秒前
27秒前
asdfghjk完成签到,获得积分10
27秒前
希望天下0贩的0应助落晨采纳,获得10
27秒前
diu完成签到,获得积分10
28秒前
28秒前
科研通AI2S应助1234采纳,获得10
29秒前
30秒前
33秒前
Cker完成签到,获得积分10
34秒前
落晨发布了新的文献求助10
35秒前
health__up完成签到,获得积分10
35秒前
35秒前
36秒前
852应助昵称采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299957
求助须知:如何正确求助?哪些是违规求助? 2934810
关于积分的说明 8470613
捐赠科研通 2608363
什么是DOI,文献DOI怎么找? 1424166
科研通“疑难数据库(出版商)”最低求助积分说明 661873
邀请新用户注册赠送积分活动 645611