A spatial statistical approach to estimate bus stop demand using GIS-processed data

运输工程 计算机科学 空间分析 环境科学 地理 工程类 遥感
作者
Yaiza Montero-Lamas,Rubén Fernández‐Casal,Francisco‐Alberto Varela‐García,Alfonso Orro,Margarita Novales
出处
期刊:Journal of Transport Geography [Elsevier BV]
卷期号:118: 103906-103906
标识
DOI:10.1016/j.jtrangeo.2024.103906
摘要

This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hadfunsix完成签到 ,获得积分10
3秒前
Thien应助贝塔采纳,获得10
4秒前
hyl-tcm完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
高高的天亦完成签到 ,获得积分10
22秒前
贝塔完成签到,获得积分10
25秒前
周周南发布了新的文献求助10
26秒前
七人七发布了新的文献求助10
35秒前
36秒前
mengmenglv完成签到 ,获得积分10
38秒前
宓天问发布了新的文献求助10
40秒前
thchiang发布了新的文献求助10
46秒前
Galri完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
个性松完成签到 ,获得积分10
1分钟前
carbonhan完成签到,获得积分10
1分钟前
1分钟前
雍州小铁匠完成签到 ,获得积分10
1分钟前
蝌蚪发布了新的文献求助10
1分钟前
1分钟前
thchiang完成签到 ,获得积分10
1分钟前
属实有点拉胯完成签到 ,获得积分10
1分钟前
wangye完成签到 ,获得积分10
1分钟前
sdsdsd完成签到 ,获得积分20
1分钟前
木木完成签到 ,获得积分10
1分钟前
蝌蚪完成签到,获得积分10
1分钟前
1分钟前
思源应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
清脆的靖仇完成签到,获得积分10
2分钟前
2分钟前
liman发布了新的文献求助10
2分钟前
shirley完成签到,获得积分10
2分钟前
2分钟前
2分钟前
柒八染完成签到 ,获得积分10
2分钟前
angelinazh发布了新的文献求助10
2分钟前
韩医生口腔完成签到 ,获得积分0
2分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008669
求助须知:如何正确求助?哪些是违规求助? 3548328
关于积分的说明 11298785
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810281
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218