已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A spatial statistical approach to estimate bus stop demand using GIS-processed data

运输工程 计算机科学 空间分析 环境科学 地理 工程类 遥感
作者
Yaiza Montero-Lamas,Rubén Fernández‐Casal,Francisco‐Alberto Varela‐García,Alfonso Orro,Margarita Novales
出处
期刊:Journal of Transport Geography [Elsevier]
卷期号:118: 103906-103906
标识
DOI:10.1016/j.jtrangeo.2024.103906
摘要

This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助Cmqq采纳,获得10
刚刚
科研通AI6应助犹豫的善茬采纳,获得10
刚刚
橘子圭令完成签到,获得积分10
刚刚
yy完成签到,获得积分10
1秒前
aabbc发布了新的文献求助10
1秒前
顺利的飞荷完成签到,获得积分0
3秒前
Murphy发布了新的文献求助20
5秒前
椿·发布了新的文献求助10
5秒前
8秒前
11秒前
luis发布了新的社区帖子
11秒前
14秒前
优美紫槐发布了新的文献求助10
14秒前
共享精神应助路越采纳,获得10
14秒前
LSH970829发布了新的文献求助10
16秒前
16秒前
颜南风完成签到 ,获得积分10
17秒前
阮婷完成签到,获得积分10
17秒前
17秒前
虚拟的柠檬完成签到,获得积分10
18秒前
juliar发布了新的文献求助30
19秒前
共享精神应助称心的砖头采纳,获得10
19秒前
qin123完成签到 ,获得积分10
19秒前
Ryy发布了新的文献求助10
22秒前
踏实的傲白完成签到 ,获得积分0
23秒前
lili发布了新的文献求助10
23秒前
ly发布了新的文献求助10
24秒前
24秒前
25秒前
LSH970829完成签到,获得积分10
26秒前
ceeray23发布了新的文献求助20
29秒前
阮婷发布了新的文献求助10
33秒前
科研通AI6应助生动娩采纳,获得10
33秒前
科研通AI6应助生动娩采纳,获得10
33秒前
33秒前
科研通AI6应助生动娩采纳,获得100
33秒前
科研通AI6应助生动娩采纳,获得10
33秒前
科研通AI6应助生动娩采纳,获得10
33秒前
科研通AI6应助生动娩采纳,获得10
33秒前
科研通AI6应助生动娩采纳,获得10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599471
求助须知:如何正确求助?哪些是违规求助? 4685106
关于积分的说明 14837681
捐赠科研通 4668281
什么是DOI,文献DOI怎么找? 2537976
邀请新用户注册赠送积分活动 1505410
关于科研通互助平台的介绍 1470783