已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A spatial statistical approach to estimate bus stop demand using GIS-processed data

运输工程 计算机科学 空间分析 环境科学 地理 工程类 遥感
作者
Yaiza Montero-Lamas,Rubén Fernández‐Casal,Francisco‐Alberto Varela‐García,Alfonso Orro,Margarita Novales
出处
期刊:Journal of Transport Geography [Elsevier]
卷期号:118: 103906-103906
标识
DOI:10.1016/j.jtrangeo.2024.103906
摘要

This study integrates the fields of geography, urban transit planning, and statistical learning to develop a sophisticated methodology for predicting bus demand at the stop level. It uses a Generalized Additive Model that captures non-linear relationships and incorporates spatial dependence, improving traditional methods. It showcases a high predictive capacity with a pseudo R-squared of 0.79 during its validation, ensuring substantial explanatory power for new observations. A large number of variables, including land-use characteristics, socioeconomic factors, and transit supply, are analysed. These widely available predictors facilitate the transferability of the methodology to other urban areas. Transit supply predictor considers the number of annual trips per stop and area as well as the location of stops along the lines that serve them. GIS processing of the data allows the calculation of variables within the areas of influence of each stop, obtained by following the walkable street network. For the case study, the presence of universities, hospitals, and lodgings areas, as well as inhabitants and ratio of bus trips show a positive impact on bus demand. This geo-analysis process employs accurate disaggregated data, such as information on uses in each building, as well as methods for assigning socioeconomic information from local areas to residential buildings. This study highlights the complex relationship between the location of transit network stops, both along the bus line and in terms of geographical proximity, their transit supply, and its surrounding factors. The results indicate that there is spatial dependence for stops less than 1.15 km apart. The developed methodology provides reliable information to transit network planners for decision making. Specifically, this proposed methodology can contribute to designing new routes, optimizing stop locations, and estimating the impact of changes in the transit network or urban planning on bus demand. All these improvement measures promote sustainable urban mobility, consequently fostering environmental and social benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
acchangg应助纯牛奶采纳,获得10
刚刚
2秒前
2秒前
5秒前
啊哈发布了新的文献求助10
6秒前
wh发布了新的文献求助10
6秒前
乌托邦发布了新的文献求助10
7秒前
8秒前
可爱的函函应助钦川采纳,获得10
8秒前
wkwkkwk发布了新的文献求助10
9秒前
搜集达人应助Zz采纳,获得10
12秒前
13秒前
我是老大应助成就莞采纳,获得10
13秒前
薰硝壤应助阳地黄采纳,获得30
15秒前
daye发布了新的文献求助30
15秒前
脚踏实地呢完成签到 ,获得积分10
15秒前
16秒前
烟花应助江峰采纳,获得10
17秒前
17秒前
月亮发布了新的文献求助10
18秒前
19秒前
zhou完成签到,获得积分10
19秒前
20秒前
墨粉发布了新的文献求助30
21秒前
22秒前
许勰完成签到,获得积分10
22秒前
J11发布了新的文献求助10
24秒前
25秒前
25秒前
xmy发布了新的文献求助10
26秒前
淡定幻竹发布了新的文献求助30
27秒前
灶灶发布了新的文献求助10
27秒前
jiangyt完成签到,获得积分10
27秒前
29秒前
Zz发布了新的文献求助10
29秒前
汉堡包应助J11采纳,获得10
30秒前
江峰发布了新的文献求助10
30秒前
Hello应助chany采纳,获得10
30秒前
32秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150293
求助须知:如何正确求助?哪些是违规求助? 2801435
关于积分的说明 7844751
捐赠科研通 2458905
什么是DOI,文献DOI怎么找? 1308810
科研通“疑难数据库(出版商)”最低求助积分说明 628582
版权声明 601727