亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learned deep feature based crack detection using support vector machine: a comparative study

计算机科学 卷积神经网络 学习迁移 人工智能 提取器 特征(语言学) 支持向量机 可用性 模式识别(心理学) 机器学习 深度学习 特征提取 数据挖掘 工程类 语言学 哲学 人机交互 工艺工程
作者
K. S. Bhalaji Kharthik,Edeh Michael Onyema,Saurav Mallik,B. V. V. Siva Prasad,Hong Qin,C. S. Kanimozhi Selvi,O. K. Sikha
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-63767-5
摘要

Abstract Technology offers a lot of potential that is being used to improve the integrity and efficiency of infrastructures. Crack is one of the major concerns that can affect the integrity or usability of any structure. Oftentimes, the use of manual inspection methods leads to delays which can worsen the situation. Automated crack detection has become very necessary for efficient management and inspection of critical infrastructures. Previous research in crack detection employed classification and localization-based models using Deep Convolutional Neural Networks (DCNNs). This study suggests and compares the effectiveness of transfer learned DCNNs for crack detection as a classification model and as a feature extractor to overcome this restriction. The main objective of this paper is to present various methods of crack detection on surfaces and compare their performance over 3 different datasets. Experiments conducted in this work are threefold: initially, the effectiveness of 12 transfer learned DCNN models for crack detection is analyzed on three publicly available datasets: SDNET, CCIC and BSD. With an accuracy of 53.40%, ResNet101 outperformed other models on the SDNET dataset. EfficientNetB0 was the most accurate (98.8%) model on the BSD dataset, and ResNet50 performed better with an accuracy of 99.8% on the CCIC dataset. Secondly, two image enhancement methods are employed to enhance the images and are transferred learned on the 12 DCNNs in pursuance of improving the performance of the SDNET dataset. The results from the experiments show that the enhanced images improved the accuracy of transfer-learned crack detection models significantly. Furthermore, deep features extracted from the last fully connected layer of the DCNNs are used to train the Support Vector Machine (SVM). The integration of deep features with SVM enhanced the detection accuracy across all the DCNN-dataset combinations, according to analysis in terms of accuracy, precision, recall, and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luv完成签到,获得积分20
2秒前
未来可期完成签到,获得积分10
3秒前
asaki完成签到,获得积分10
6秒前
科研通AI2S应助快乐的C采纳,获得10
13秒前
感动的醉波完成签到,获得积分10
17秒前
sobergod完成签到 ,获得积分10
20秒前
平日裤子完成签到 ,获得积分10
33秒前
ZSJ发布了新的文献求助10
48秒前
49秒前
共享精神应助ZSJ采纳,获得10
52秒前
zhangxr发布了新的文献求助10
53秒前
1分钟前
今后应助一啊鸭采纳,获得10
1分钟前
撸起袖子加油干完成签到,获得积分10
1分钟前
小骆发布了新的文献求助10
1分钟前
luv发布了新的文献求助50
1分钟前
一方完成签到 ,获得积分10
1分钟前
隐形曼青应助小骆采纳,获得10
1分钟前
_Charmo发布了新的文献求助30
1分钟前
阿文发布了新的文献求助10
1分钟前
1分钟前
sora98完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ZSJ发布了新的文献求助10
1分钟前
picapica668发布了新的文献求助10
1分钟前
韩十四完成签到 ,获得积分10
1分钟前
tata0215完成签到 ,获得积分10
1分钟前
又村完成签到 ,获得积分10
1分钟前
Singularity应助ZSJ采纳,获得10
1分钟前
CodeCraft应助ZSJ采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Carrots发布了新的文献求助10
2分钟前
小骆发布了新的文献求助10
2分钟前
LJYang完成签到,获得积分10
2分钟前
2分钟前
心灵美鑫完成签到 ,获得积分10
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139515
求助须知:如何正确求助?哪些是违规求助? 2790418
关于积分的说明 7795109
捐赠科研通 2446823
什么是DOI,文献DOI怎么找? 1301450
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146