Transfer learned deep feature based crack detection using support vector machine: a comparative study

计算机科学 卷积神经网络 学习迁移 人工智能 提取器 特征(语言学) 支持向量机 可用性 模式识别(心理学) 机器学习 深度学习 特征提取 数据挖掘 工程类 哲学 人机交互 语言学 工艺工程
作者
K. S. Bhalaji Kharthik,Edeh Michael Onyema,Saurav Mallik,B. V. V. Siva Prasad,Hong Qin,C. S. Kanimozhi Selvi,O. K. Sikha
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-63767-5
摘要

Abstract Technology offers a lot of potential that is being used to improve the integrity and efficiency of infrastructures. Crack is one of the major concerns that can affect the integrity or usability of any structure. Oftentimes, the use of manual inspection methods leads to delays which can worsen the situation. Automated crack detection has become very necessary for efficient management and inspection of critical infrastructures. Previous research in crack detection employed classification and localization-based models using Deep Convolutional Neural Networks (DCNNs). This study suggests and compares the effectiveness of transfer learned DCNNs for crack detection as a classification model and as a feature extractor to overcome this restriction. The main objective of this paper is to present various methods of crack detection on surfaces and compare their performance over 3 different datasets. Experiments conducted in this work are threefold: initially, the effectiveness of 12 transfer learned DCNN models for crack detection is analyzed on three publicly available datasets: SDNET, CCIC and BSD. With an accuracy of 53.40%, ResNet101 outperformed other models on the SDNET dataset. EfficientNetB0 was the most accurate (98.8%) model on the BSD dataset, and ResNet50 performed better with an accuracy of 99.8% on the CCIC dataset. Secondly, two image enhancement methods are employed to enhance the images and are transferred learned on the 12 DCNNs in pursuance of improving the performance of the SDNET dataset. The results from the experiments show that the enhanced images improved the accuracy of transfer-learned crack detection models significantly. Furthermore, deep features extracted from the last fully connected layer of the DCNNs are used to train the Support Vector Machine (SVM). The integration of deep features with SVM enhanced the detection accuracy across all the DCNN-dataset combinations, according to analysis in terms of accuracy, precision, recall, and F1-score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧忒耳佩完成签到,获得积分10
1秒前
mango_完成签到 ,获得积分10
1秒前
1秒前
keep完成签到,获得积分10
2秒前
星辰大海应助xuexi采纳,获得10
2秒前
FCX完成签到 ,获得积分10
2秒前
4秒前
文静完成签到,获得积分10
4秒前
4秒前
4秒前
小鹅完成签到 ,获得积分10
4秒前
陈有游发布了新的文献求助10
5秒前
5秒前
善学以致用应助hachii采纳,获得10
6秒前
朝颜完成签到,获得积分10
6秒前
迎风发布了新的文献求助10
7秒前
Qoo完成签到,获得积分10
8秒前
董博宇完成签到,获得积分10
8秒前
可爱的函函应助xiaoblue采纳,获得10
8秒前
9秒前
holder完成签到,获得积分10
9秒前
keep发布了新的文献求助10
9秒前
9秒前
FashionBoy应助温柔宛儿采纳,获得10
10秒前
Ysj完成签到,获得积分10
11秒前
zf发布了新的文献求助10
11秒前
难摧完成签到,获得积分10
12秒前
AireenBeryl531应助鳗鱼友灵采纳,获得10
12秒前
岁月静好完成签到,获得积分10
12秒前
13秒前
13秒前
香蕉觅云应助GongPeijie采纳,获得10
14秒前
14秒前
妙松完成签到,获得积分10
14秒前
OYZY完成签到,获得积分10
14秒前
15秒前
YYC关注了科研通微信公众号
15秒前
15秒前
wawaeryu完成签到,获得积分10
16秒前
奥拉同学发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3955056
求助须知:如何正确求助?哪些是违规求助? 3501390
关于积分的说明 11102563
捐赠科研通 3231634
什么是DOI,文献DOI怎么找? 1786494
邀请新用户注册赠送积分活动 870109
科研通“疑难数据库(出版商)”最低求助积分说明 801813