Advancing toxicity studies of per- and poly-fluoroalkyl substances (pfass) through machine learning: Models, mechanisms, and future directions

毒性 环境毒理学 不良结局途径 生化工程 计算机科学 环境化学 计算生物学 化学 生物 工程类 有机化学
作者
Lingxuan Meng,Beihai Zhou,Haijun Liu,Yuefang Chen,Rongfang Yuan,Zhongbing Chen,Shuai Luo,Huilun Chen
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:946: 174201-174201 被引量:11
标识
DOI:10.1016/j.scitotenv.2024.174201
摘要

Perfluorinated and perfluoroalkyl substances (PFASs), encompassing a vast array of isomeric chemicals, are recognized as typical emerging contaminants with direct or potential impacts on human health and the ecological environment. With the complex and elusive toxicological profiles of PFASs, machine learning (ML) has been increasingly employed in their toxicity studies due to its proficiency in prediction and data analytics. This integration is poised to become a predominant trend in environmental toxicology, propelled by the swift advancements in computational technology. This review diligently examines the literature to encapsulate the varied objectives of employing ML in the toxicity studies of PFASs: (1) Utilizing ML to establish Quantitative Structure-Activity Relationship (QSAR) models for PFASs with diverse toxicity endpoints, facilitating the targeted toxicity prediction of unidentified PFASs; (2) Investigating and substantiating the Adverse Outcome Pathway (AOP) through the synergy of ML and traditional toxicological methods, with this refining the toxicity assessment framework for PFASs; (3) Dissecting and elucidating the features of established ML models to advance Open Research into the toxicity of PFASs, with a primary focus on determinants and mechanisms. The discourse extends to an in-depth examination of ML studies, segregating findings based on their distinct application trajectories. Given that ML represents a nascent paradigm within PFASs research, this review delineates the collective challenges encountered in the ML-mediated study of PFAS toxicity and proffers strategic guidance for ensuing investigations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿超要努力完成签到 ,获得积分10
刚刚
友00000完成签到 ,获得积分10
刚刚
kento发布了新的文献求助30
1秒前
CipherSage应助独特的秋采纳,获得10
2秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
3秒前
木头马尾应助科研通管家采纳,获得20
3秒前
古月发布了新的文献求助10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得20
4秒前
Zhanghh87应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
zimo应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
jack应助科研通管家采纳,获得10
4秒前
没吃饭应助科研通管家采纳,获得30
4秒前
ZZL应助科研通管家采纳,获得60
5秒前
5秒前
情怀应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
云飞扬应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
LYSM应助科研通管家采纳,获得10
5秒前
5秒前
打打应助今年orz采纳,获得10
6秒前
ding应助今夜不设防采纳,获得10
7秒前
小朱朱完成签到,获得积分20
7秒前
7秒前
8秒前
Nevaeh完成签到,获得积分10
8秒前
momo发布了新的文献求助30
8秒前
lt关注了科研通微信公众号
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798