Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features

精神分裂症(面向对象编程) 神经影像学 联想(心理学) 神经科学 人工智能 心理学 计算机科学 精神科 心理治疗师
作者
Jingjing Gao,Maomin Qian,Zhengning Wang,Yanling Li,Na Luo,Sangma Xie,Weiyang Shi,Peng Li,Jun Chen,Yunchun Chen,Huaning Wang,Wenming Liu,Zhigang Li,Yongfeng Yang,Hua Guo,Ping Wan,Luxian Lv,Lin Lü,Jun Yan,Yuqing Song,Huiling Wang,Hongxing Zhang,Huawang Wu,Yuping Ning,Yuhui Du,Yuqi Cheng,Jian Xu,Xiufeng Xu,Dai Zhang,Tianzai Jiang
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
标识
DOI:10.1093/schbul/sbae069
摘要

Abstract Background and Hypothesis Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. Study Design Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. Study Results Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. Conclusions Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI’s superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Crazy_Runner发布了新的文献求助10
1秒前
想个名字发布了新的文献求助10
1秒前
慕青应助小菜鸡采纳,获得30
1秒前
2秒前
3秒前
cc关闭了cc文献求助
4秒前
4秒前
狂野的清涟完成签到,获得积分10
5秒前
丘比特应助笨笨采纳,获得10
5秒前
orixero应助hanyang965采纳,获得10
6秒前
XY完成签到,获得积分20
6秒前
Orange应助突突突采纳,获得10
6秒前
打打应助季生采纳,获得10
7秒前
8秒前
10秒前
科目三应助乌禅采纳,获得10
11秒前
超帅冰蝶发布了新的文献求助10
12秒前
13秒前
闪闪龙猫应助务实涔雨采纳,获得10
13秒前
YY完成签到,获得积分10
13秒前
小菜鸡发布了新的文献求助30
14秒前
15秒前
丘比特应助无奈的老姆采纳,获得10
16秒前
17秒前
七七发布了新的文献求助10
17秒前
笨笨发布了新的文献求助10
18秒前
毛豆应助谷川采纳,获得20
18秒前
彦希完成签到 ,获得积分10
18秒前
彭彭发布了新的文献求助30
18秒前
19秒前
小马甲应助西客采纳,获得10
20秒前
21秒前
善学以致用应助克林沙星采纳,获得10
21秒前
22秒前
崔文慧发布了新的文献求助10
22秒前
23秒前
23秒前
23秒前
可靠幼旋应助之组长了采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310273
求助须知:如何正确求助?哪些是违规求助? 2943254
关于积分的说明 8513427
捐赠科研通 2618482
什么是DOI,文献DOI怎么找? 1431111
科研通“疑难数据库(出版商)”最低求助积分说明 664374
邀请新用户注册赠送积分活动 649557