Exploring Schizophrenia Classification Through Multimodal MRI and Deep Graph Neural Networks: Unveiling Brain Region-Specific Weight Discrepancies and Their Association With Cell-Type Specific Transcriptomic Features

精神分裂症(面向对象编程) 神经影像学 联想(心理学) 神经科学 人工智能 心理学 计算机科学 精神科 心理治疗师
作者
Jingjing Gao,Maomin Qian,Zhengning Wang,Yanling Li,Na Luo,Sangma Xie,Weiyang Shi,Peng Li,Jun Chen,Yunchun Chen,Huaning Wang,Wenming Liu,Zhigang Li,Yongfeng Yang,Hua Guo,Ping Wan,Luxian Lv,Lin Lü,Jun Yan,Yuqing Song
出处
期刊:Schizophrenia Bulletin [Oxford University Press]
被引量:1
标识
DOI:10.1093/schbul/sbae069
摘要

Abstract Background and Hypothesis Schizophrenia (SZ) is a prevalent mental disorder that imposes significant health burdens. Diagnostic accuracy remains challenging due to clinical subjectivity. To address this issue, we explore magnetic resonance imaging (MRI) as a tool to enhance SZ diagnosis and provide objective references and biomarkers. Using deep learning with graph convolution, we represent MRI data as graphs, aligning with brain structure, and improving feature extraction, and classification. Integration of multiple modalities is expected to enhance classification. Study Design Our study enrolled 683 SZ patients and 606 healthy controls from 7 hospitals, collecting structural MRI and functional MRI data. Both data types were represented as graphs, processed by 2 graph attention networks, and fused for classification. Grad-CAM with graph convolution ensured interpretability, and partial least squares analyzed gene expression in brain regions. Study Results Our method excelled in the classification task, achieving 83.32% accuracy, 83.41% sensitivity, and 83.20% specificity in 10-fold cross-validation, surpassing traditional methods. And our multimodal approach outperformed unimodal methods. Grad-CAM identified potential brain biomarkers consistent with gene analysis and prior research. Conclusions Our study demonstrates the effectiveness of deep learning with graph attention networks, surpassing previous SZ diagnostic methods. Multimodal MRI’s superiority over unimodal MRI confirms our initial hypothesis. Identifying potential brain biomarkers alongside gene biomarkers holds promise for advancing objective SZ diagnosis and research in SZ.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mm林完成签到 ,获得积分10
刚刚
培风发布了新的文献求助10
刚刚
1秒前
Lucas应助综述王采纳,获得10
1秒前
CipherSage应助我被猪艾特了采纳,获得10
2秒前
忧郁的研完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助30
2秒前
燕一刀完成签到,获得积分10
3秒前
3秒前
3秒前
yar应助轩辕寄风采纳,获得10
4秒前
4秒前
马轩发布了新的文献求助10
5秒前
5秒前
汉堡包应助foxp3采纳,获得10
5秒前
所所应助奶盖呀采纳,获得10
6秒前
6秒前
万文涛完成签到,获得积分10
6秒前
燕一刀发布了新的文献求助10
6秒前
熊i发布了新的文献求助10
7秒前
思源应助小果叮采纳,获得10
7秒前
8秒前
pharrah发布了新的文献求助10
8秒前
培风完成签到,获得积分10
9秒前
空帆船完成签到,获得积分10
10秒前
10秒前
kingwill发布了新的文献求助20
11秒前
12秒前
12秒前
12秒前
13秒前
初见完成签到,获得积分10
13秒前
开朗的班发布了新的文献求助10
13秒前
clewaychan完成签到,获得积分10
13秒前
hooo发布了新的文献求助10
13秒前
14秒前
14秒前
香香发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502770
关于积分的说明 11110029
捐赠科研通 3233693
什么是DOI,文献DOI怎么找? 1787452
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152