Multiple Normalized Solutions for First Order Hamiltonian Systems
数学
哈密顿系统
数学分析
订单(交换)
应用数学
经济
财务
作者
Yuxia Guo,Yuanyang Yu
出处
期刊:Siam Journal on Mathematical Analysis [Society for Industrial and Applied Mathematics] 日期:2024-06-03卷期号:56 (3): 3861-3885
标识
DOI:10.1137/23m1584575
摘要
.In this paper, we study the following first order Hamiltonian systems: \(\mathcal{J}\dot{u}+M(t)u=|K(t)u|^{p-2}K(t)^TK(t)u+\lambda u\; \text{in}\;\mathbb{R},\) where \(u:\mathbb{R}\to \mathbb{R}^{2N}\), \(p\in (2,4)\), \(\lambda \in \mathbb{R}\) arises as the Lagrange multiplier, and \(\mathcal{J},M, K(t)\) are \(2N\times 2N\) real matrices with \(\mathcal{J}^{-1}=\mathcal{J}^T=-\mathcal{J}, M=M^T\). Using the multiplicity theorem of Ljusternik–Schnirelmann together with variational methods, we show the existence of multiple normalized homoclinic solutions for this problem. We deal with not only the case det\(K(t)\neq 0\) for all \(t\) in a set of nonzero measure, but also the case det\(K(t)=0\) for all \(t\in \mathbb{R}\). In particular, we also obtain bifurcation results of this problem.Keywordsmultiple normalized solutionsHamiltonian systemsvariational methodsMSC codes70H0535J50