An explanatory study of factors influencing engagement in AI education at the K-12 Level: an extension of the classic TAM model

课程 计算机科学 认知 结构方程建模 互动性 背景(考古学) 可用性 人机交互 心理学 多媒体 教育学 机器学习 生物 古生物学 神经科学
作者
Wei Li,Xiaolin Zhang,Jing Li,Xiao Yang,Dong Li,Yantong Liu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:5
标识
DOI:10.1038/s41598-024-64363-3
摘要

Abstract Artificial intelligence (AI) holds immense promise for K-12 education, yet understanding the factors influencing students’ engagement with AI courses remains a challenge. This study addresses this gap by extending the technology acceptance model (TAM) to incorporate cognitive factors such as AI intrinsic motivation (AIIM), AI readiness (AIRD), AI confidence (AICF), and AI anxiety (AIAX), alongside human–computer interaction (HCI) elements like user interface (UI), content (C), and learner-interface interactivity (LINT) in the context of using generative AI (GenAI) tools. By including these factors, an expanded model is presented to capture the complexity of student engagement with AI education. To validate the model, 210 Chinese students spanning grades K7 to K9 participated in a 1 month artificial intelligence course. Survey data and structural equation modeling reveal significant relationships between cognitive and HCI factors and perceived usefulness (PU) and ease of use (PEOU). Specifically, AIIM, AIRD, AICF, UI, C, and LINT positively influence PU and PEOU, while AIAX negatively affects both. Furthermore, PU and PEOU significantly predict students’ attitudes toward AI curriculum learning. These findings underscore the importance of considering cognitive and HCI factors in the design and implementation of AI education initiatives. By providing a theoretical foundation and practical insights, this study informs curriculum development and aids educational institutions and businesses in evaluating and optimizing AI4K12 curriculum design and implementation strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gengen应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
刚刚
超爱菠萝应助科研通管家采纳,获得10
刚刚
颜子尧发布了新的文献求助10
刚刚
面壁思过应助科研通管家采纳,获得10
刚刚
田様应助科研通管家采纳,获得10
刚刚
11应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
1秒前
Frankylau应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
glocon发布了新的文献求助10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
面壁思过应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
gengen应助科研通管家采纳,获得10
1秒前
风清扬发布了新的文献求助10
1秒前
1秒前
1秒前
喜悦绿旋完成签到,获得积分10
1秒前
ting应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
冬天333应助科研通管家采纳,获得10
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851