肌成纤维细胞
SMAD公司
表型
细胞生物学
转化(遗传学)
癌症研究
转化生长因子
信号转导
肺
Smad2蛋白
成纤维细胞
化学
生物
医学
病理
纤维化
基因
内科学
体外
生物化学
作者
Yuan Liu,LI Xiao-fen,Youguo Yang
出处
期刊:Tissue & Cell
[Elsevier]
日期:2024-05-14
卷期号:88: 102407-102407
标识
DOI:10.1016/j.tice.2024.102407
摘要
Pulmonary fibrosis is a chronic and progressive lung disorder. The pro-fibrosis factors induced by M2 macrophage phenotype promote the differentiation of fibroblasts into myofibroblasts, which is essential for pulmonary fibrosis. We aimed to explore the role and mechanism of BTB domain and CNC homology 1 (BACH1) in pulmonary fibrosis. BACH1 was knocked down in THP‐1 polarized M2 macrophages with or without FOS-like antigen 2 (FOSL2) overexpression, the expression of M2 macrophage markers was detected. Cell viability, migration, invasion and extracellular matrix (ECM) accumulation were estimated by CCK-8, wound healing, transwell, western bot and immunofluorescence staining. Luciferase reporter and chromatin immunoprecipitation assays were used to verify the binding of BACH1 to FOSL2 promotor region. In vivo, a bleomycin (BLM)-induced pulmonary fibrosis mice model was established to evaluate the effect of BACH1 silencing on the histopathological changes, M2 macrophage phenotype and extracellular matrix (ECM) deposition. Expression of proteins was assessed with western blot. Results indicated that BACH1 expression was upregulated in M2 macrophages polarized from THP-1 cells. BACH1 deficiency inhibited the polarization of THP-1 to the M2 macrophage phenotype to promote the transformation of lung fibroblasts into myofibroblasts. Additionally, BACH1 could transcriptionally activate FOSL2 expression in THP-1-derived macrophages to upregulate TGFβ/SMAD signaling in HFL-1 cells. The animal experiments indicated that BACH1 knockdown alleviated BLM-induced pulmonary fibrosis, M2 macrophage polarization and inactivated FOSL2/TGFβ/SMAD signaling in mice lung tissues. Together, this finding suggests BACH1/FOSL2 may be useful therapeutic targets for the treatment of pulmonary fibrosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI