计算机科学
变压器
Pet成像
正电子发射断层摄影术
人工智能
计算机视觉
核医学
医学
电气工程
工程类
电压
作者
Jiaqi Cui,Pinxian Zeng,Xinyi Zeng,Yuanyuan Xu,Peng Wang,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3413832
摘要
To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI