Prior Knowledge-guided Triple-Domain Transformer-GAN for Direct PET Reconstruction from Low-Count Sinograms

计算机科学 变压器 Pet成像 正电子发射断层摄影术 人工智能 计算机视觉 核医学 医学 电气工程 工程类 电压
作者
Jiaqi Cui,Pinxian Zeng,Xinyi Zeng,Yuanyuan Xu,Peng Wang,Jiliu Zhou,Yan Wang,Dinggang Shen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3413832
摘要

To obtain high-quality positron emission tomography (PET) images while minimizing radiation exposure, numerous methods have been dedicated to acquiring standard-count PET (SPET) from low-count PET (LPET). However, current methods have failed to take full advantage of the different emphasized information from multiple domains, i.e., the sinogram, image, and frequency domains, resulting in the loss of crucial details. Meanwhile, they overlook the unique inner-structure of the sinograms, thereby failing to fully capture its structural characteristics and relationships. To alleviate these problems, in this paper, we proposed a prior knowledge-guided transformer-GAN that unites triple domains of sinogram, image, and frequency to directly reconstruct SPET images from LPET sinograms, namely PK-TriDo. Our PK-TriDo consists of a Sinogram Inner-Structure-based Denoising Transformer (SISD-Former) to denoise the input LPET sinogram, a Frequency-adapted Image Reconstruction Transformer (FaIR-Former) to reconstruct high-quality SPET images from the denoised sinograms guided by the image domain prior knowledge, and an Adversarial Network (AdvNet) to further enhance the reconstruction quality via adversarial training. Specifically tailored for the PET imaging mechanism, we injected a sinogram embedding module that partitions the sinograms by rows and columns to obtain 1D sequences of angles and distances to faithfully preserve the inner-structure of the sinograms. Moreover, to mitigate high-frequency distortions and enhance reconstruction details, we integrated global-local frequency parsers (GLFPs) into FaIR-Former to calibrate the distributions and proportions of different frequency bands, thus compelling the network to preserve high-frequency details. Evaluations on three datasets with different dose levels and imaging scenarios demonstrated that our PK-TriDo outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大强完成签到,获得积分10
1秒前
1秒前
1秒前
LC发布了新的文献求助10
1秒前
1秒前
小兜豆豆发布了新的文献求助10
2秒前
2秒前
mingtian完成签到,获得积分10
2秒前
瓜呱完成签到 ,获得积分10
3秒前
ANSON完成签到 ,获得积分20
3秒前
自然发布了新的文献求助10
4秒前
灵巧的翠桃完成签到,获得积分10
4秒前
medaW发布了新的文献求助10
4秒前
venjohnson发布了新的文献求助10
4秒前
dyfsj发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
车厘子发布了新的文献求助10
6秒前
suiyi发布了新的文献求助10
6秒前
不落黄昏完成签到,获得积分10
7秒前
邵辛发布了新的文献求助10
8秒前
8秒前
tt发布了新的文献求助10
10秒前
爱卿5271发布了新的文献求助10
10秒前
淡淡绮琴发布了新的文献求助10
11秒前
11秒前
11秒前
科研牛马完成签到,获得积分10
11秒前
dyfsj完成签到,获得积分20
11秒前
不配.应助suiyi采纳,获得20
12秒前
12秒前
forgodssake完成签到,获得积分10
12秒前
Owen应助科研通管家采纳,获得10
13秒前
不配.应助科研通管家采纳,获得20
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得10
13秒前
iNk应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144366
求助须知:如何正确求助?哪些是违规求助? 2795962
关于积分的说明 7817099
捐赠科研通 2452017
什么是DOI,文献DOI怎么找? 1304837
科研通“疑难数据库(出版商)”最低求助积分说明 627295
版权声明 601419