Interpretable Online Log Analysis Using Large Language Models with Prompt Strategies

计算机科学 自然语言处理 人工智能
作者
Yilun Liu,Shimin Tao,Weibin Meng,Jingyu Wang,Wenbing Ma,Yuhang Chen,Yanqing Zhao,Hao Yang,Yanfei Jiang
标识
DOI:10.1145/3643916.3644408
摘要

Automated log analysis is crucial in modern software-intensive systems for facilitating program comprehension throughout software maintenance and engineering life cycles. Existing methods perform tasks such as log parsing and log anomaly detection by providing a single prediction value without interpretation. However, given the increasing volume of system events, the limited interpretability of analysis results hinders analysts' comprehension of program status and their ability to take appropriate actions. Moreover, these methods require substantial in-domain training data, and their performance declines sharply (by up to 62.5%) in online scenarios involving unseen logs from new domains, a common occurrence due to rapid software updates. In this paper, we propose LogPrompt, a novel interpretable log analysis approach for online scenarios. LogPrompt employs large language models (LLMs) to perform online log analysis tasks via a suite of advanced prompt strategies tailored for log tasks, which enhances LLMs' performance by up to 380.7% compared with simple prompts. Experiments on nine publicly available evaluation datasets across two tasks demonstrate that LogPrompt, despite requiring no in-domain training, outperforms existing approaches trained on thousands of logs by up to 55.9%. We also conduct a human evaluation of LogPrompt's interpretability, with six practitioners possessing over 10 years of experience, who highly rated the generated content in terms of usefulness and readability (averagely 4.42/5). LogPrompt also exhibits remarkable compatibility with open-source and smaller-scale LLMs, making it flexible for practical deployment. Code of LogPrompt is available at https://github.com/lunyiliu/LogPrompt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ai白哥完成签到,获得积分10
1秒前
明理从露完成签到 ,获得积分10
1秒前
欣于所遇完成签到,获得积分10
1秒前
XIEMIN完成签到,获得积分10
1秒前
杂货铺老板娘完成签到,获得积分10
1秒前
1秒前
shamy夫妇完成签到,获得积分10
2秒前
喜马拉雅山上跳科目三完成签到,获得积分10
2秒前
2秒前
zz完成签到,获得积分10
2秒前
精明雁露完成签到,获得积分10
3秒前
阿卡宁发布了新的文献求助10
3秒前
阔达的海完成签到,获得积分10
3秒前
感性的道之完成签到 ,获得积分10
3秒前
3秒前
3秒前
12356完成签到,获得积分10
4秒前
柯一一应助奋斗含巧采纳,获得10
5秒前
WQ完成签到,获得积分10
5秒前
5秒前
Gwen发布了新的文献求助20
5秒前
rrr完成签到,获得积分10
7秒前
熊熊熊完成签到,获得积分10
7秒前
精明雁露发布了新的文献求助10
7秒前
pearsir完成签到,获得积分10
8秒前
linxw完成签到,获得积分10
9秒前
Mmxn完成签到,获得积分10
9秒前
Amber完成签到,获得积分10
9秒前
赘婿应助1325850238采纳,获得10
9秒前
蒙蒙完成签到,获得积分10
10秒前
withyou发布了新的文献求助10
10秒前
DAISHU完成签到,获得积分20
10秒前
柚子完成签到,获得积分10
10秒前
一只住在海边的猫完成签到,获得积分10
11秒前
Zdh同学完成签到,获得积分10
12秒前
ltc完成签到,获得积分10
12秒前
Harper完成签到,获得积分10
12秒前
执着银耳汤完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478