材料科学
锂(药物)
衰退
石墨
离子
机制(生物学)
化学工程
复合材料
电信
计算机科学
化学
物理
有机化学
生物
解码方法
量子力学
工程类
内分泌学
作者
Haibao Zhu,Jun Ma,Huihui Ding,Huanhuan Wu,Chengming Zhang,Xiaolong Fang,Xuan Han,Li Lao,Liping Ni,Xiufang Wang
标识
DOI:10.1016/j.ceramint.2024.06.366
摘要
Batteries can be overdischarged in practical applications, which does not pose safety risks. However, overdischarge can have a significant impact on battery performance. In this work, LiNi0.5Co0.2Mn0.3O2 (NCM)&LiMn2O4 (LMO)/graphite batteries are used as the main body. The failure mechanism of the batteries under different temperatures (-10 °C, 25 °C, 45 °C) and different depth of discharge (DOD) (105% DOD and 110% DOD) is studied systematically through the electrochemical methods, scanning electron microscopy (SEM), X-ray diffractometry (XRD), and X-ray photoelectron spectroscopy (XPS). The results show that the deep overdischarge and high temperature accelerate the degradation of electrolyte, separator and collector, and cause rupture and recombination of solid electrolyte interphase (SEI) film. These result in the loss of conductivity, active substances and lithium ions, in which the loss of lithium ions plays a dominant role. Moreover, the attenuation of positive active material mainly comes from NCM. Our research results are of great significance for researchers to understand the failure mechanism of lithium batteries under different conditions and can provide important guidance for the safe design of lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI