Duration and resource constraint prediction models for construction projects using regression machine learning method

持续时间(音乐) 约束(计算机辅助设计) 回归分析 回归 计算机科学 资源(消歧) 机器学习 人工智能 资源限制 工程类 运筹学 工业工程 数学 统计 机械工程 分布式计算 文学类 艺术 计算机网络
作者
Gopinath Selvam,Mohan Kamalanandhini,Muthuvel Velpandian,Sheema Shah
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
标识
DOI:10.1108/ecam-06-2023-0582
摘要

Purpose The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties. Design/methodology/approach The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor. Findings The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R 2 was from 0.95 to 0.97, indicating better efficiency compared with other prediction models. Research limitations/implications The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices. Practical implications The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes. Social implications Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements. Originality/value This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助薛同学采纳,获得10
2秒前
JamesPei应助lishihao采纳,获得10
2秒前
3秒前
雪白雍发布了新的文献求助30
3秒前
4秒前
5秒前
5秒前
猪蹄侠客发布了新的文献求助10
5秒前
我ppp发布了新的文献求助10
6秒前
陈老板发布了新的文献求助10
6秒前
澡雪完成签到,获得积分10
6秒前
7秒前
crystal发布了新的文献求助80
7秒前
7秒前
Singularity应助月yue采纳,获得10
8秒前
Stove发布了新的文献求助10
9秒前
9秒前
burrrrr发布了新的文献求助10
9秒前
10秒前
雷123发布了新的文献求助10
10秒前
儿科发布了新的文献求助30
11秒前
8R60d8应助好好学习采纳,获得10
11秒前
积极以彤发布了新的文献求助10
11秒前
小竹爱科研完成签到,获得积分10
13秒前
lishihao完成签到,获得积分10
14秒前
14秒前
Singularity应助猪蹄侠客采纳,获得10
15秒前
Singularity应助猪蹄侠客采纳,获得10
15秒前
lishihao发布了新的文献求助10
16秒前
16秒前
17秒前
陈老板完成签到,获得积分10
18秒前
科研通AI2S应助wangayting采纳,获得10
20秒前
科目三应助keeper王采纳,获得10
20秒前
高兴月亮发布了新的文献求助30
21秒前
cdu应助陈老板采纳,获得10
22秒前
why完成签到,获得积分10
22秒前
Singularity应助小白采纳,获得10
23秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141507
求助须知:如何正确求助?哪些是违规求助? 2792469
关于积分的说明 7803258
捐赠科研通 2448691
什么是DOI,文献DOI怎么找? 1302802
科研通“疑难数据库(出版商)”最低求助积分说明 626665
版权声明 601240