Duration and resource constraint prediction models for construction projects using regression machine learning method

持续时间(音乐) 约束(计算机辅助设计) 回归分析 回归 计算机科学 资源(消歧) 机器学习 人工智能 资源限制 工程类 运筹学 工业工程 数学 统计 机械工程 艺术 计算机网络 分布式计算 文学类
作者
Gopinath Selvam,Mohan Kamalanandhini,Muthuvel Velpandian,Sheema Shah
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
被引量:2
标识
DOI:10.1108/ecam-06-2023-0582
摘要

Purpose The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties. Design/methodology/approach The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor. Findings The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R 2 was from 0.95 to 0.97, indicating better efficiency compared with other prediction models. Research limitations/implications The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices. Practical implications The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes. Social implications Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements. Originality/value This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后百褶裙完成签到,获得积分10
刚刚
SciGPT应助15采纳,获得10
刚刚
人文完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
Xuer完成签到 ,获得积分10
1秒前
1秒前
www发布了新的文献求助10
2秒前
赘婿应助千玺的小粉丝儿采纳,获得10
2秒前
璐璐核桃露给璐璐核桃露的求助进行了留言
2秒前
情怀应助乖猫要努力采纳,获得10
2秒前
peter完成签到,获得积分10
2秒前
3秒前
愉快的铅笔完成签到,获得积分10
3秒前
David发布了新的文献求助10
3秒前
3秒前
3秒前
tufei完成签到,获得积分10
3秒前
mklwxhlsd发布了新的文献求助10
4秒前
科研通AI6应助荣荣采纳,获得10
4秒前
傲娇的项链完成签到,获得积分10
4秒前
看文献了发布了新的文献求助10
5秒前
小二郎应助DTO采纳,获得10
5秒前
筱筱发布了新的文献求助10
5秒前
天天发布了新的文献求助10
6秒前
新手小夏发布了新的文献求助10
6秒前
7秒前
夏季完成签到,获得积分10
7秒前
852应助MG采纳,获得10
8秒前
牛蛙丶丶发布了新的文献求助10
8秒前
轻松的小虾米完成签到,获得积分10
8秒前
汉堡包应助zhouyin2采纳,获得10
9秒前
lilili应助加油采纳,获得10
9秒前
9秒前
咕咕咕发布了新的文献求助10
10秒前
研友_8QxayZ发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721