已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Duration and resource constraint prediction models for construction projects using regression machine learning method

持续时间(音乐) 约束(计算机辅助设计) 回归分析 回归 计算机科学 资源(消歧) 机器学习 人工智能 资源限制 工程类 运筹学 工业工程 数学 统计 机械工程 分布式计算 文学类 艺术 计算机网络
作者
Gopinath Selvam,Mohan Kamalanandhini,Muthuvel Velpandian,Sheema Shah
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
被引量:2
标识
DOI:10.1108/ecam-06-2023-0582
摘要

Purpose The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties. Design/methodology/approach The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor. Findings The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R 2 was from 0.95 to 0.97, indicating better efficiency compared with other prediction models. Research limitations/implications The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices. Practical implications The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes. Social implications Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements. Originality/value This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Spice完成签到 ,获得积分10
刚刚
Nick完成签到 ,获得积分0
刚刚
姜彩秀完成签到,获得积分10
3秒前
4秒前
慌慌完成签到 ,获得积分10
4秒前
5秒前
ckyyds完成签到 ,获得积分10
6秒前
6秒前
科研通AI2S应助石墨采纳,获得10
7秒前
WL发布了新的文献求助10
8秒前
SCINEXUS完成签到,获得积分0
9秒前
9秒前
YuchaoJia发布了新的文献求助10
11秒前
笨蛋搞笑女完成签到 ,获得积分10
12秒前
13秒前
自强不息完成签到 ,获得积分10
15秒前
石墨发布了新的文献求助10
19秒前
坦率完成签到,获得积分10
21秒前
TT完成签到,获得积分10
22秒前
heyan完成签到,获得积分10
23秒前
石墨完成签到,获得积分10
26秒前
CodeCraft应助Tanya采纳,获得10
27秒前
FSDF完成签到,获得积分10
28秒前
南寅完成签到,获得积分10
28秒前
任性的幻儿完成签到 ,获得积分10
29秒前
sss完成签到 ,获得积分10
30秒前
smile完成签到 ,获得积分10
33秒前
派大星和海绵宝宝完成签到,获得积分10
34秒前
冰西瓜完成签到 ,获得积分0
34秒前
35秒前
Suaia完成签到,获得积分10
36秒前
爱笑的映冬完成签到 ,获得积分10
37秒前
專注完美近乎苛求完成签到 ,获得积分10
39秒前
852应助wanying采纳,获得10
39秒前
40秒前
阳光皮带完成签到,获得积分10
40秒前
Charles完成签到,获得积分0
40秒前
摇滚蜗牛完成签到,获得积分10
41秒前
43秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426218
求助须知:如何正确求助?哪些是违规求助? 4539957
关于积分的说明 14171259
捐赠科研通 4457794
什么是DOI,文献DOI怎么找? 2444671
邀请新用户注册赠送积分活动 1435605
关于科研通互助平台的介绍 1413123