Duration and resource constraint prediction models for construction projects using regression machine learning method

持续时间(音乐) 约束(计算机辅助设计) 回归分析 回归 计算机科学 资源(消歧) 机器学习 人工智能 资源限制 工程类 运筹学 工业工程 数学 统计 机械工程 分布式计算 文学类 艺术 计算机网络
作者
Gopinath Selvam,Mohan Kamalanandhini,Muthuvel Velpandian,Sheema Shah
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
被引量:2
标识
DOI:10.1108/ecam-06-2023-0582
摘要

Purpose The construction projects are highly subjected to uncertainties, which result in overruns in time and cost. Realistic estimates of workforce and duration are imperative for construction projects to attain their intended objectives. The aim of this study is to provide accurate labor and duration estimates for the construction projects, considering actual uncertainties. Design/methodology/approach The dataset was formulated from the information collected from 186 construction projects through direct interviews, group discussions and questionnaire methods. The actual uncertainties and exposure conditions of construction activities were recorded. The data were verified with the standard guideline to remove the outliers. The prediction model was developed using support vector regression (SVR), a machine learning (ML) method. The performance was evaluated using the widely adopted regression metrics. Further, the cross validation was made with the visualization of residuals and predicted errors, ridge regression with transformed target distribution and a Gaussian Naive Bayes (NB) regressor. Findings The prediction models predicted the duration and labor requirements with the consideration of actual uncertainties. The residual plot indicated the appropriate use of SVR to develop the prediction model. The duration (DC) and resource constraint (RC) prediction models obtained 80 and 82% accuracy, respectively. Besides, the developed model obtained better accuracy for the training and test scores than the Gaussian NB regressor. Further, the range of the explained variance score and R 2 was from 0.95 to 0.97, indicating better efficiency compared with other prediction models. Research limitations/implications The researchers will utilize the research findings to estimate the duration and labor requirements under uncertain conditions and further improve the construction project management practices. Practical implications The research findings will enable industry practitioners to accurately estimate the duration and labor requirements, considering historical uncertain conditions. A precise estimation of resources will ensure the attainment of the intended project outcomes. Social implications Delays in construction projects will be reduced by implementing the research findings, which significantly ensures the effective utilization of resources and attainment of other economic benefits. The policymakers will develop a guideline to develop a database to collect the uncertainties of the construction projects and relatively estimate the resource requirements. Originality/value This is the first study to consider the actual uncertainties of construction projects to develop RC and DC prediction models. The developed prediction models accurately estimate the duration and labor requirements with minimal computational time. The industry practitioners will be able to accurately estimate the duration and labor requirements using the developed models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助开心之王采纳,获得10
刚刚
5秒前
weiwei完成签到,获得积分10
5秒前
5秒前
7秒前
8秒前
111发布了新的文献求助10
9秒前
9秒前
nlix发布了新的文献求助30
9秒前
英俊的铭应助Snail采纳,获得10
10秒前
11秒前
11秒前
完美世界应助阿芝采纳,获得10
12秒前
12秒前
慕青应助fjm采纳,获得10
14秒前
耍酷白云发布了新的文献求助10
15秒前
当当发布了新的文献求助10
15秒前
龙在天涯发布了新的文献求助10
15秒前
SciGPT应助lucas采纳,获得10
16秒前
所所应助丢手绢采纳,获得10
17秒前
17秒前
小二郎应助weiwei采纳,获得10
18秒前
不想学习的颓废少女完成签到,获得积分10
19秒前
屿溡完成签到,获得积分10
20秒前
龙猫抱枕完成签到,获得积分10
22秒前
英姑应助无聊的亿先采纳,获得10
22秒前
徐芭拉发布了新的文献求助10
22秒前
大个应助1851611453采纳,获得10
22秒前
22秒前
23秒前
24秒前
24秒前
24秒前
24秒前
科研通AI5应助焦立超采纳,获得10
25秒前
千空发布了新的文献求助10
26秒前
lbx发布了新的文献求助10
27秒前
lucas发布了新的文献求助10
27秒前
只因发布了新的文献求助30
28秒前
vanshaw.vs完成签到,获得积分10
29秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226